000305228 001__ 305228
000305228 005__ 20251012023148.0
000305228 0247_ $$2doi$$a10.1039/D5MH01486G
000305228 0247_ $$2pmid$$apmid:41065342
000305228 0247_ $$2ISSN$$a2051-6347
000305228 0247_ $$2ISSN$$a2051-6355
000305228 0247_ $$2altmetric$$aaltmetric:182072387
000305228 037__ $$aDKFZ-2025-02074
000305228 041__ $$aEnglish
000305228 082__ $$a540
000305228 1001_ $$aWei, Kaiyang$$b0
000305228 245__ $$aNovel ambipolar polymers for detection beyond 1000 nm with organic phototransistors.
000305228 260__ $$aCambridge$$bRSC Publ.$$c2025
000305228 3367_ $$2DRIVER$$aarticle
000305228 3367_ $$2DataCite$$aOutput Types/Journal article
000305228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760104094_11806
000305228 3367_ $$2BibTeX$$aARTICLE
000305228 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000305228 3367_ $$00$$2EndNote$$aJournal Article
000305228 500__ $$aepub
000305228 520__ $$aOrganic phototransistors (OPTs) hold significant promise for cost-effective, flexible optoelectronic applications, particularly in Shortwave-Infrared (SWIR) detection, which is crucial for applications such as health monitoring, communications, and artificial vision. Traditional OPTs often rely on unipolar materials, limiting their efficiency by utilizing only one type of charge carrier. In contrast, ambipolar organic semiconductors (OSCs), transporting both electrons and holes, can fully harness photogenerated carriers, thereby enhancing device performance. Here, high-performance, solution-processed ambipolar single-component SWIR OPTs are demonstrated by fine-tuning the number of fused thiophene rings in donor-acceptor (D-A) conjugated polymers utilizing thiadiazoloquinoxaline-unit (TQ) as the electron-deficient unit. Through systematic polymer characterizations and optoelectronic device characterizations it was revealed that three fused thiophene rings (TQ-T3) delivered ambipolar NIR phototransistors with well-balanced hole and electron mobilities of 0.03 and 0.02 cm2 V-1 s-1 and the highest reported specific detectivity of 2 × 108 Jones (at 1100 nm), with external quantum efficiency of 1400% and 1200% for the p-type and n-type single-component active layer material, respectively. These findings contribute to advancing the design of efficient ambipolar OPTs for SWIR detection, with potential applications in imaging and sensing technologies.
000305228 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000305228 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000305228 7001_ $$aNodari, Davide$$b1
000305228 7001_ $$00000-0002-6715-4392$$aRodríguez-Martínez, Xabier$$b2
000305228 7001_ $$00000-0002-0330-0813$$aTsetseris, Leonidas$$b3
000305228 7001_ $$0P:(DE-HGF)0$$aNega, Alkmini D$$b4
000305228 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b5$$udkfz
000305228 7001_ $$aRimmele, Martina$$b6
000305228 7001_ $$00000-0002-2692-387X$$aHastas, Nikos$$b7
000305228 7001_ $$aLi, Yijia$$b8
000305228 7001_ $$00000-0001-5507-4961$$aEisner, Flurin$$b9
000305228 7001_ $$aMatzapetakis, Manolis$$b10
000305228 7001_ $$00000-0002-9669-7273$$aMartin, Jaime$$b11
000305228 7001_ $$aGregoriou, Vasilis G$$b12
000305228 7001_ $$00000-0002-3226-8234$$aGasparini, Nicola$$b13
000305228 7001_ $$00000-0002-7783-157X$$aChochos, Christos L$$b14
000305228 7001_ $$00000-0003-3701-1857$$aPanidi, Julianna$$b15
000305228 773__ $$0PERI:(DE-600)2744250-0$$a10.1039/D5MH01486G$$gp. 10.1039.D5MH01486G$$pnn$$tMaterials Horizons$$vnn$$x2051-6347$$y2025
000305228 909CO $$ooai:inrepo02.dkfz.de:305228$$pVDB
000305228 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000305228 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000305228 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000305228 9141_ $$y2025
000305228 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-02$$wger
000305228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER HORIZ : 2022$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000305228 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bMATER HORIZ : 2022$$d2025-01-02
000305228 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000305228 980__ $$ajournal
000305228 980__ $$aVDB
000305228 980__ $$aI:(DE-He78)E060-20160331
000305228 980__ $$aUNRESTRICTED