000305464 001__ 305464
000305464 005__ 20251026023424.0
000305464 0247_ $$2doi$$a10.1038/s41420-025-02810-4
000305464 0247_ $$2pmid$$apmid:41115880
000305464 0247_ $$2altmetric$$aaltmetric:182707864
000305464 037__ $$aDKFZ-2025-02182
000305464 041__ $$aEnglish
000305464 082__ $$a610
000305464 1001_ $$aKüchler, Sandra$$b0
000305464 245__ $$aCell cycle regulator MYBL2 is a distinct vulnerability in acute myeloid leukemia.
000305464 260__ $$aLondon$$bNature Publishing Group$$c2025
000305464 3367_ $$2DRIVER$$aarticle
000305464 3367_ $$2DataCite$$aOutput Types/Journal article
000305464 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761054776_1629334
000305464 3367_ $$2BibTeX$$aARTICLE
000305464 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000305464 3367_ $$00$$2EndNote$$aJournal Article
000305464 520__ $$aAcute myeloid leukemia (AML) is a hematologic malignancy characterized by the accumulation of myeloid blasts in the bone marrow. Despite the availability of potential curative treatments, patients frequently experience unfavorable outcomes. One crucial aspect contributing to relapse is the plasticity of leukemic clones, which enables them to switch between active proliferation and dormancy. The adaptability of AML underscores the need for novel therapies targeting AML-specific proteins. To address this, genome-wide CRISPR screens can be utilized to identify cancer entity-specific vulnerabilities. Leveraging publicly available functional genomics datasets and comparing AML with non-AML cancer cell lines, we identified a significant dependency on the cell cycle-regulating gene MYBL2 in AML. We describe MYBL2 as a key driver of AML cell growth and proliferation, highlighting its established role as a cell cycle regulator. Also, our findings uncover its previously unrecognized function as an inhibitor of cellular senescence. A knockdown of MYBL2 induces cell cycle arrest in the G2/M phase with subsequent induction of apoptosis in vitro, and reduces leukemic burden in a patient-derived xenograft (PDX) model in vivo. Interestingly, some AML cells evade apoptosis and enter a senescent-like phenotype upon MYBL2-knockdown, which is reversible upon re-expression of MYBL2. Finally, analyses of clinical data from two publicly available patient cohorts demonstrate a lower probability of survival in patients with higher MYBL2 expression, further hinting at the potential relevance of MYBL2 in AML. In conclusion, our findings demonstrate the essential role of MYBL2 in AML, governing the balance between cell proliferation, cell survival and senescence, ultimately influencing the fate of AML cells.
000305464 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000305464 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000305464 7001_ $$aBrilloff, Silke$$b1
000305464 7001_ $$aSchäfer, Silvia$$b2
000305464 7001_ $$aRahimian, Elahe$$b3
000305464 7001_ $$aKufrin, Vida$$b4
000305464 7001_ $$aPeri, Shraddha S$$b5
000305464 7001_ $$0P:(DE-He78)476ba475ebb0d48ae4ec27f03d836a41$$aMusa, Julian$$b6$$udkfz
000305464 7001_ $$0P:(DE-He78)7a590ab95c6f7ba52880452da78ecd6c$$aGrünewald, Thomas$$b7$$udkfz
000305464 7001_ $$00000-0002-1070-0217$$aSchewe, Denis M$$b8
000305464 7001_ $$0P:(DE-He78)7a10ea1b9b2872da9f375002c44ddfce$$aBall, Claudia$$b9
000305464 7001_ $$0P:(DE-He78)2a9091646ed378ef030a77fd32aedf79$$aBornhäuser, Martin$$b10
000305464 7001_ $$0P:(DE-He78)157277fe62f07df1732f9d126a51d1b9$$aGlimm, Hanno$$b11
000305464 7001_ $$0P:(DE-He78)3e8aacf45abb87d22071314b72805dc6$$aBill, Marius$$b12
000305464 7001_ $$0P:(DE-He78)cc78445a2cc45a9edf8ee2160a1adbb4$$aWurm, Alexander Arthur$$b13
000305464 773__ $$0PERI:(DE-600)2842546-7$$a10.1038/s41420-025-02810-4$$gVol. 11, no. 1, p. 470$$n1$$p470$$tCell death discovery$$v11$$x2058-7716$$y2025
000305464 909CO $$ooai:inrepo02.dkfz.de:305464$$pVDB
000305464 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)476ba475ebb0d48ae4ec27f03d836a41$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000305464 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7a590ab95c6f7ba52880452da78ecd6c$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000305464 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7a10ea1b9b2872da9f375002c44ddfce$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000305464 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2a9091646ed378ef030a77fd32aedf79$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000305464 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)157277fe62f07df1732f9d126a51d1b9$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000305464 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3e8aacf45abb87d22071314b72805dc6$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000305464 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cc78445a2cc45a9edf8ee2160a1adbb4$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000305464 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000305464 9141_ $$y2025
000305464 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:08Z
000305464 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:08Z
000305464 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:08Z
000305464 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-10T15:36:08Z
000305464 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-21
000305464 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-21
000305464 9201_ $$0I:(DE-He78)B410-20160331$$kB410$$lTranslationale Pädiatrische Sarkomforschung$$x0
000305464 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000305464 9201_ $$0I:(DE-He78)DD01-20160331$$kDD01$$lDKTK Koordinierungsstelle Dresden$$x2
000305464 9201_ $$0I:(DE-He78)B280-20160331$$kB280$$lB280 Translationale funktionelle Krebsgenomik$$x3
000305464 980__ $$ajournal
000305464 980__ $$aVDB
000305464 980__ $$aI:(DE-He78)B410-20160331
000305464 980__ $$aI:(DE-He78)HD01-20160331
000305464 980__ $$aI:(DE-He78)DD01-20160331
000305464 980__ $$aI:(DE-He78)B280-20160331
000305464 980__ $$aUNRESTRICTED