000305614 001__ 305614
000305614 005__ 20251109023642.0
000305614 0247_ $$2doi$$a10.1186/s13054-025-05695-y
000305614 0247_ $$2pmid$$apmid:41174811
000305614 0247_ $$2pmc$$apmc:PMC12579395
000305614 0247_ $$2ISSN$$a1364-8535
000305614 0247_ $$2ISSN$$a1466-609X
000305614 0247_ $$2altmetric$$aaltmetric:183660845
000305614 037__ $$aDKFZ-2025-02264
000305614 041__ $$aEnglish
000305614 082__ $$a610
000305614 1001_ $$00000-0002-5103-5137$$avon Renesse, Janusz$$b0
000305614 245__ $$aIndirect calorimetry identifies hypermetabolism associated with muscle wasting and increased risk of energy deficit in ICU patients.
000305614 260__ $$aLondon$$bBioMed Central$$c2025
000305614 3367_ $$2DRIVER$$aarticle
000305614 3367_ $$2DataCite$$aOutput Types/Journal article
000305614 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762175364_899170
000305614 3367_ $$2BibTeX$$aARTICLE
000305614 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000305614 3367_ $$00$$2EndNote$$aJournal Article
000305614 520__ $$aMuscle mass loss is a major contributor to morbidity and mortality in Intensive Care Unit (ICU) patients, but the role of metabolic state - particularly energy expenditure - in this process remains unclear. This study investigates the association between metabolic status and muscle mass loss in critically ill adults using indirect calorimetry and CT imaging assessed muscle quantification.In this observational study, adult ICU patients with at least two indirect calorimetry measurements and matched abdominal CT scans were included. Resting energy expenditure (REE) was measured by indirect calorimetry, and muscle mass was quantified as the cross-sectional area (CSA) of the posterior muscle group at the L3 vertebral level. Statistical analyses included regression modeling and group comparisons.The observational study included 88 patients (n = 88), all of whom underwent at least two calorimetric measurements with corresponding CT scans, and 43 patients (n = 43) had at least three assessments. Persistently elevated normalized energy expenditure per kilogram of body weight (nREE) was independently associated with greater muscle loss. Patients classified as hypermetabolic by nREE experienced significantly more muscle wasting than those with lower metabolic activity. Hypermetabolism was associated with increased inflammatory markers, while sedation or agitation (RAAS) and higher level of consciousness (GCS) were not related to metabolic state.Persistent hypermetabolism in ICU patients is independently associated with accelerated muscle mass loss. Early identification of hypermetabolic patients using indirect calorimetry may enable targeted nutritional interventions to reduce muscle mass wasting and improve clinical outcomes.
000305614 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000305614 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000305614 650_7 $$2Other$$aCachexia
000305614 650_7 $$2Other$$aCritical illness
000305614 650_7 $$2Other$$aHypermetabolic patients
000305614 650_7 $$2Other$$aHypermetabolism
000305614 650_7 $$2Other$$aHypermetabolizers
000305614 650_7 $$2Other$$aIndirect calorimetry
000305614 650_7 $$2Other$$aIntensive care unit (ICU)
000305614 650_7 $$2Other$$aMuscle loss
000305614 650_7 $$2Other$$aMuscle wasting
000305614 650_7 $$2Other$$aResting energy expenditure (REE)
000305614 650_7 $$2Other$$aSarcopenia
000305614 650_2 $$2MeSH$$aHumans
000305614 650_2 $$2MeSH$$aCalorimetry, Indirect: methods
000305614 650_2 $$2MeSH$$aMale
000305614 650_2 $$2MeSH$$aFemale
000305614 650_2 $$2MeSH$$aMiddle Aged
000305614 650_2 $$2MeSH$$aIntensive Care Units: organization & administration
000305614 650_2 $$2MeSH$$aIntensive Care Units: statistics & numerical data
000305614 650_2 $$2MeSH$$aAged
000305614 650_2 $$2MeSH$$aEnergy Metabolism: physiology
000305614 650_2 $$2MeSH$$aCritical Illness
000305614 650_2 $$2MeSH$$aMuscular Atrophy: physiopathology
000305614 650_2 $$2MeSH$$aAdult
000305614 650_2 $$2MeSH$$aTomography, X-Ray Computed: methods
000305614 7001_ $$avon Kessel, Moritz Karl Friedrich$$b1
000305614 7001_ $$aOehme, Florian$$b2
000305614 7001_ $$aKirchberg, Johanna$$b3
000305614 7001_ $$aKalandarishvili, Mikheil$$b4
000305614 7001_ $$aNebelung, Heiner$$b5
000305614 7001_ $$aMerboth, Felix$$b6
000305614 7001_ $$aMirtschink, Peter$$b7
000305614 7001_ $$0P:(DE-HGF)0$$aWeitz, Jürgen$$b8
000305614 7001_ $$0P:(DE-HGF)0$$aDistler, Marius$$b9
000305614 7001_ $$aHeld, Hanns-Christoph$$b10
000305614 7001_ $$aKühn, Jens-Peter$$b11
000305614 7001_ $$aMeisterfeld, Ronny$$b12
000305614 773__ $$0PERI:(DE-600)2051256-9$$a10.1186/s13054-025-05695-y$$gVol. 29, no. 1, p. 464$$n1$$p464$$tCritical care$$v29$$x1364-8535$$y2025
000305614 909CO $$ooai:inrepo02.dkfz.de:305614$$pVDB
000305614 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000305614 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000305614 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000305614 9141_ $$y2025
000305614 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:51Z
000305614 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:51Z
000305614 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:51Z
000305614 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRIT CARE : 2022$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bCRIT CARE : 2022$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-20
000305614 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-20
000305614 9201_ $$0I:(DE-He78)DD01-20160331$$kDD01$$lDKTK Koordinierungsstelle Dresden$$x0
000305614 980__ $$ajournal
000305614 980__ $$aVDB
000305614 980__ $$aI:(DE-He78)DD01-20160331
000305614 980__ $$aUNRESTRICTED