TY - JOUR
AU - Schallenberg, Simon
AU - Dernbach, Gabriel
AU - Ruane, Sharon
AU - Jurmeister, Philipp
AU - Böhm, Cornelius
AU - Standvoss, Kai
AU - Ghosh, Sandip
AU - Frentsch, Marco
AU - Dragomir, Mihnea-Paul
AU - Keyl, Philipp G
AU - Friedrich, Corinna
AU - Na, Il-Kang
AU - Merkelbach-Bruse, Sabine
AU - Quaas, Alexander
AU - Frost, Nikolaj
AU - Boschung, Kyrill
AU - Randerath, Winfried
AU - Schlachtenberger, Georg
AU - Heldwein, Matthias
AU - Keilholz, Ulrich
AU - Hekmat, Khosro
AU - Rückert, Jens-Carsten
AU - Büttner, Reinhard
AU - Vasaturo, Angela
AU - Horst, David
AU - Ruff, Lukas
AU - Alber, Maximilian
AU - Müller, Klaus-Robert
AU - Klauschen, Frederick
TI - AI-powered spatial cell phenomics enhances risk stratification in non-small cell lung cancer.
JO - Nature Communications
VL - 16
IS - 1
SN - 2041-1723
CY - [London]
PB - Springer Nature
M1 - DKFZ-2025-02269
SP - 9701
PY - 2025
AB - Risk stratification remains a critical challenge in non-small cell lung cancer patients for optimal therapy selection. In this study, we develop an artificial intelligence-powered spatial cellomics approach that combines histology, multiplex immunofluorescence imaging and multimodal machine learning to characterize the complex cellular relationships of 43 cell phenotypes in the tumor microenvironment in a real-world retrospective cohort of 1168 non-small cell lung cancer patients from two large German cancer centers. The model identifies cell niches associated with survival and achieves a 14
KW - Humans
KW - Carcinoma, Non-Small-Cell Lung: pathology
KW - Carcinoma, Non-Small-Cell Lung: mortality
KW - Carcinoma, Non-Small-Cell Lung: diagnostic imaging
KW - Lung Neoplasms: pathology
KW - Lung Neoplasms: mortality
KW - Tumor Microenvironment
KW - Female
KW - Male
KW - Artificial Intelligence
KW - Retrospective Studies
KW - Phenomics: methods
KW - Middle Aged
KW - Aged
KW - Risk Assessment: methods
KW - Machine Learning
KW - Carcinoma, Squamous Cell: pathology
LB - PUB:(DE-HGF)16
C6 - pmid:41184299
DO - DOI:10.1038/s41467-025-65783-z
UR - https://inrepo02.dkfz.de/record/305621
ER -