000306522 001__ 306522
000306522 005__ 20260203143651.0
000306522 0247_ $$2doi$$a10.2967/jnumed.125.270185
000306522 0247_ $$2pmid$$apmid:41266254
000306522 0247_ $$2ISSN$$a0097-9058
000306522 0247_ $$2ISSN$$a0022-3123
000306522 0247_ $$2ISSN$$a0161-5505
000306522 0247_ $$2ISSN$$a1535-5667
000306522 0247_ $$2ISSN$$a2159-662X
000306522 037__ $$aDKFZ-2025-02587
000306522 041__ $$aEnglish
000306522 082__ $$a610
000306522 1001_ $$aRöhrich, Manuel$$b0
000306522 245__ $$aDigital Biopsy and Network Analysis of Dynamic [68Ga]Ga-FAPI-46 Data in Patients with Malignant and Benign Pancreatic Lesions.
000306522 260__ $$aNew York, NY$$bSoc.$$c2026
000306522 3367_ $$2DRIVER$$aarticle
000306522 3367_ $$2DataCite$$aOutput Types/Journal article
000306522 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1770125773_1877213
000306522 3367_ $$2BibTeX$$aARTICLE
000306522 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000306522 3367_ $$00$$2EndNote$$aJournal Article
000306522 500__ $$a2026 Feb 2;67(2):304-312
000306522 520__ $$aThe pathologies pancreatic ductal adenocarcinomas, inflammatory lesions of the pancreas, postpancreatectomy reactive tissue, and recurrent pancreatic ductal adenocarcinomas all express fibroblast activation protein and are hardly distinguishable by static PET using [68Ga]Ga-labeled fibroblast activation protein inhibitors (FAPIs) combined with CT. Dynamic imaging allows full [68Ga]-Ga-FAPI kinetic profile analysis, highlighting differences among these pathologies. Here, we applied a voxel-level digital biopsy approach combined with network analysis and clustering to characterize healthy, nonmalignant pathologic, and malignant pathologic kinetic signatures. Methods: This monocentric, retrospective study included 47 patients (>18 y) with morphologically unclear pancreatic lesions on CT or MRI and supplemental [68Ga]Ga-FAPI-46 PET/CT in a primary (31 patients) or recurrent (16 patients) setting. Lesions were classified according to biopsy results (primary cases) or CT appearance and clinical course (recurrent cases). Digital biopsy samples (300 voxels) of pancreatic lesions and control organs (muscle, fat, kidneys, liver, and blood) were taken and then masked and imported into an open source visual analytics application. Voxel networks were created with multiple digital biopsy samples from a single scan or digital biopsy samples combined from multiple scans, with a minimum Pearson correlation value of 0.7. A k-nearest-neighbor edge reduction was applied before Markov clustering. Datasets were then unmasked for interpretation. Static PET parameters (SUVmax and SUVmean) and time to peak of pancreatic lesions and control tissues were extracted from isotropic volumes and analyzed by a t test (threshold for significance, P = 0.05). Results: This work created 47 individual networks and 2 combined networks. Within individual networks, voxels tended to arrange and cluster within the sampled volume of interest (VOI; left and right kidneys strongly coclustered). Networks typically arranged into healthy controls, elimination organs, and pathologic (malignant and nonmalignant) regions. Pathologies tended to cluster with high purity (>95% from the same VOI), with multiple clusters per VOI, indicating intralesional heterogeneity. Our analysis approach could differentiate between malignant and nonmalignant pathologies in the primary and recurrence settings. This differentiation was driven by slower FAPI clearance within malignant voxels. Conclusion: The kinetics of [68Ga]Ga-FAPI-46 across the different tissues, coupled with this sampling and analysis approach, allowed the separation and identification of healthy, nonmalignant pathologic, and malignant pathologic clusters and kinetic features that may facilitate diagnosis and warrant further investigation.
000306522 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000306522 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000306522 650_7 $$2Other$$a[68Ga]Ga-FAPI
000306522 650_7 $$2Other$$aclustering
000306522 650_7 $$2Other$$adynamic PET
000306522 650_7 $$2Other$$apancreatic ductal adenocarcinoma
000306522 7001_ $$aGlatting, Frederik M$$b1
000306522 7001_ $$aGeisinger, Magdalena$$b2
000306522 7001_ $$aSpektor, Anna-Maria$$b3
000306522 7001_ $$aBuchholz, Hans-Georg$$b4
000306522 7001_ $$aWessendorf, Joel$$b5
000306522 7001_ $$avon Goetze, Isabelle$$b6
000306522 7001_ $$aHoppner, Jorge$$b7
000306522 7001_ $$aLiermann, Jakob$$b8
000306522 7001_ $$aKnoll, Maximilian$$b9
000306522 7001_ $$aLang, Matthias$$b10
000306522 7001_ $$aHeger, Ulrike$$b11
000306522 7001_ $$aSchreckenberger, Mathias$$b12
000306522 7001_ $$aLoos, Martin$$b13
000306522 7001_ $$aTavares, Adriana$$b14
000306522 7001_ $$aHerfarth, Klaus$$b15
000306522 7001_ $$aDebus, Jürgen$$b16
000306522 7001_ $$0P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aHaberkorn, Uwe$$b17$$udkfz
000306522 7001_ $$aMacaskill, Mark G$$b18
000306522 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.125.270185$$gp. jnumed.125.270185 -$$n2$$p304-312$$tJournal of nuclear medicine$$v67$$x0097-9058$$y2026
000306522 909CO $$ooai:inrepo02.dkfz.de:306522$$pVDB
000306522 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000306522 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000306522 9141_ $$y2025
000306522 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2022$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000306522 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2022$$d2025-01-01
000306522 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000306522 980__ $$ajournal
000306522 980__ $$aVDB
000306522 980__ $$aI:(DE-He78)E060-20160331
000306522 980__ $$aUNRESTRICTED