001     306522
005     20260203143651.0
024 7 _ |a 10.2967/jnumed.125.270185
|2 doi
024 7 _ |a pmid:41266254
|2 pmid
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
037 _ _ |a DKFZ-2025-02587
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Röhrich, Manuel
|b 0
245 _ _ |a Digital Biopsy and Network Analysis of Dynamic [68Ga]Ga-FAPI-46 Data in Patients with Malignant and Benign Pancreatic Lesions.
260 _ _ |a New York, NY
|c 2026
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770125773_1877213
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2026 Feb 2;67(2):304-312
520 _ _ |a The pathologies pancreatic ductal adenocarcinomas, inflammatory lesions of the pancreas, postpancreatectomy reactive tissue, and recurrent pancreatic ductal adenocarcinomas all express fibroblast activation protein and are hardly distinguishable by static PET using [68Ga]Ga-labeled fibroblast activation protein inhibitors (FAPIs) combined with CT. Dynamic imaging allows full [68Ga]-Ga-FAPI kinetic profile analysis, highlighting differences among these pathologies. Here, we applied a voxel-level digital biopsy approach combined with network analysis and clustering to characterize healthy, nonmalignant pathologic, and malignant pathologic kinetic signatures. Methods: This monocentric, retrospective study included 47 patients (>18 y) with morphologically unclear pancreatic lesions on CT or MRI and supplemental [68Ga]Ga-FAPI-46 PET/CT in a primary (31 patients) or recurrent (16 patients) setting. Lesions were classified according to biopsy results (primary cases) or CT appearance and clinical course (recurrent cases). Digital biopsy samples (300 voxels) of pancreatic lesions and control organs (muscle, fat, kidneys, liver, and blood) were taken and then masked and imported into an open source visual analytics application. Voxel networks were created with multiple digital biopsy samples from a single scan or digital biopsy samples combined from multiple scans, with a minimum Pearson correlation value of 0.7. A k-nearest-neighbor edge reduction was applied before Markov clustering. Datasets were then unmasked for interpretation. Static PET parameters (SUVmax and SUVmean) and time to peak of pancreatic lesions and control tissues were extracted from isotropic volumes and analyzed by a t test (threshold for significance, P = 0.05). Results: This work created 47 individual networks and 2 combined networks. Within individual networks, voxels tended to arrange and cluster within the sampled volume of interest (VOI; left and right kidneys strongly coclustered). Networks typically arranged into healthy controls, elimination organs, and pathologic (malignant and nonmalignant) regions. Pathologies tended to cluster with high purity (>95% from the same VOI), with multiple clusters per VOI, indicating intralesional heterogeneity. Our analysis approach could differentiate between malignant and nonmalignant pathologies in the primary and recurrence settings. This differentiation was driven by slower FAPI clearance within malignant voxels. Conclusion: The kinetics of [68Ga]Ga-FAPI-46 across the different tissues, coupled with this sampling and analysis approach, allowed the separation and identification of healthy, nonmalignant pathologic, and malignant pathologic clusters and kinetic features that may facilitate diagnosis and warrant further investigation.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a [68Ga]Ga-FAPI
|2 Other
650 _ 7 |a clustering
|2 Other
650 _ 7 |a dynamic PET
|2 Other
650 _ 7 |a pancreatic ductal adenocarcinoma
|2 Other
700 1 _ |a Glatting, Frederik M
|b 1
700 1 _ |a Geisinger, Magdalena
|b 2
700 1 _ |a Spektor, Anna-Maria
|b 3
700 1 _ |a Buchholz, Hans-Georg
|b 4
700 1 _ |a Wessendorf, Joel
|b 5
700 1 _ |a von Goetze, Isabelle
|b 6
700 1 _ |a Hoppner, Jorge
|b 7
700 1 _ |a Liermann, Jakob
|b 8
700 1 _ |a Knoll, Maximilian
|b 9
700 1 _ |a Lang, Matthias
|b 10
700 1 _ |a Heger, Ulrike
|b 11
700 1 _ |a Schreckenberger, Mathias
|b 12
700 1 _ |a Loos, Martin
|b 13
700 1 _ |a Tavares, Adriana
|b 14
700 1 _ |a Herfarth, Klaus
|b 15
700 1 _ |a Debus, Jürgen
|b 16
700 1 _ |a Haberkorn, Uwe
|0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|b 17
|u dkfz
700 1 _ |a Macaskill, Mark G
|b 18
773 _ _ |a 10.2967/jnumed.125.270185
|g p. jnumed.125.270185 -
|0 PERI:(DE-600)2040222-3
|n 2
|p 304-312
|t Journal of nuclear medicine
|v 67
|y 2026
|x 0097-9058
909 C O |p VDB
|o oai:inrepo02.dkfz.de:306522
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2022
|d 2025-01-01
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l E060 KKE Nuklearmedizin
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21