

Advancing CNS tumor diagnostics with expanded DNA methylation-based classification

Graphical abstract

Authors

Martin Sill, Daniel Schrimpf, Areeba Patel, ..., Stefan M. Pfister, David T.W. Jones, Felix Sahm

Correspondence

m.sill@kitz-heidelberg.de (M.S.), david.jones@kitz-heidelberg.de (D.T.W.J.), felix.sahm@med.uni-heidelberg.de (F.S.)

In brief

Sill and colleagues present an expanded DNA methylation classifier for CNS tumors. Building upon the 2021 WHO classification, this resource introduces a hierarchical taxonomy of 184 subclasses. It enhances classification accuracy for rare entities and provides integrated genomic data from a single, streamlined assay for modern neuro-oncology.

Highlights

- Classifier aligns with and extends the 2021 WHO CNS tumor classification
- New hierarchical structure organizes 184 subclasses to inform future classifications
- Integrated assay provides classification and CNV data to streamline molecular workup
- Large-scale data enables robust identification of ultra-rare CNS tumor entities

Article

Advancing CNS tumor diagnostics with expanded DNA methylation-based classification

Martin Sill,^{1,2,124,*} Daniel Schrimpf,^{3,4} Areeba Patel,^{1,3,4} Dominik Sturm,^{1,5} Natalie Jäger,^{1,2} Philipp Sievers,^{3,4} Leonille Schweizer,^{6,7,8} Rouzbeh Banan,^{3,4} David Reuss,^{3,4} Abigail Suwala,^{3,4} Andrey Korshunov,^{3,4} Damian Stichel,^{3,4} Annika K. Wefers,^{9,10} Ann-Christin Hau,¹¹ Henning Boldt,¹² Patrick N. Harter,^{13,14,15} Zied Abdullaev,¹⁶ Jamal Benhamida,¹⁷ Daniel Teichmann,^{18,19} Arend Koch,^{18,19} Jürgen Hench,²⁰ Stephan Frank,²⁰ Martin Hasselblatt,²¹ Sheila Mansouri,^{22,23} Theresita Diaz de Stahl,²⁴ Jonathan Serrano,²⁵ Jonas Ecker,^{1,26,27} Florian Selt,^{1,27,28}

(Author list continued on next page)

¹Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany

²Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany

³Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany

⁴Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany

⁵Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁶Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany

⁷German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁸Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany

⁹Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany

¹⁰Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

¹¹Translational Neuro-Oncology Group, Dr. Senckenbergisches Institute for Neurooncology and Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany

¹²Department of Pathology, Odense University Hospital, Odense, Denmark

¹³Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany

¹⁴German Cancer Consortium (DKTK), Partner Site Munich, a partnership between DKFZ and University/University Hospital, LMU Munich, Munich, Germany

¹⁵Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany

¹⁶Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA

(Affiliations continued on next page)

SUMMARY

DNA methylation-based classification is now central to contemporary neuro-oncology, as highlighted by the World Health Organization (WHO) classification of central nervous system (CNS) tumors. We present the Heidelberg CNS Tumor Methylation Classifier version 12.8 (v12.8), trained on 7,495 methylation profiles, which expands recognized entities from 91 classes in version 11 (v11) to 184 subclasses. This expansion is a result of newly identified tumor types discovered through our large online repository and global collaborations, underscoring CNS tumor heterogeneity. The random forest-based classifier achieves 95% subclass-level accuracy, with its well-calibrated probabilistic scores providing a reliable measure of confidence for each classification. Its hierarchical output structure enables interpretation across subclass, class, family, and superfamily levels, thereby supporting clinical decisions at multiple granularities. Comparative analyses demonstrate that v12.8 surpasses previous versions and conventional WHO-based approaches. These advances highlight the improved precision and practical utility of the updated classifier in personalized neuro-oncology.

INTRODUCTION

DNA methylation-based classification has become a central pillar of state-of-the-art diagnostics in neuro-oncology. Most prominently, the fifth edition of the World Health Organization

(WHO) classification of central nervous system (CNS) tumors¹ lists DNA methylation profiling as a desirable or even essential method for accurately diagnosing several tumor types. In addition, methylation profiling is now recommended by multiple guideline authorities and medical societies, such as the National

Michael Taylor,²⁹ Vijay Ramaswamy,^{30,31} Florence Cavalli,^{32,33,34} Anna S. Berghoff,³⁵ Brigitte Bison,³⁶ Mirjam Blattner-Johnson,^{1,5,37} Ivo Buchhalter,³⁸ Rolf Buslei,³⁹ Gabriele Calaminus,⁴⁰ Nicola Dikow,⁴¹ Hildegard Dohmen,⁴² Philipp Euskirchen,^{18,19} Gudrun Fleischhack,⁴³ Amar Gajjar,⁴⁴ Nicolas U. Gerber,⁴⁵ Marco Gessi,⁴⁶ Gerrit H. Gielen,⁴⁷ Astrid Gnekow,⁴⁸ Nicholas G. Gottardo,^{49,50,51} Christine Haberler,⁵² Stefan Hamelmann,^{3,4} Volkmar Hans,⁵³ Jordan R. Hansford,⁵⁴ Christian Hartmann,⁵⁵ Frank L. Heppner,^{18,56} Pablo Hernaiz Driever,⁵⁷ Katja von Hoff,^{58,59} Ulrich W. Thomale,⁶⁰ Stephan Tippelt,⁴³ Michael C. Fröhwald,⁶¹ Christof M. Kramm,⁶² Ulrich Schüller,⁶³ Jens Schittenhelm,⁶⁴ Martin U. Schuhmann,⁶⁵ Marco Stein,⁶⁶ Petra Ketteler,^{43,67} Marc Ladanyi,¹⁷

(Author list continued on next page)

¹⁷Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA

¹⁸Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

¹⁹German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany

²⁰Department of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland

²¹Institute of Neuropathology, University Hospital Münster, Münster, Germany

²²Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada

²³MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada

²⁴Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden

²⁵Department of Pathology NYU Langone Health and NYU Grossman School of Medicine, New York, NY, USA

²⁶KITZ Clinical Trial Unit, Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany

²⁷Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany

²⁸Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany

²⁹Department of Pediatrics- Hematology/Oncology, and Neurosurgery, Texas Children's Cancer Center, Hematology-Oncology Section, Baylor College of Medicine, Houston, TX, USA

³⁰The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON, Canada

³¹Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada

³²Institut Curie, PSL Research University, Paris, France

³³Inserm, U900, Paris, France

³⁴MINES ParisTech, CBIO, Centre for Computational Biology, PSL Research University, 75006 Paris, France

³⁵Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria

³⁶Department of Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany

³⁷National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany

³⁸Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany

³⁹Institute of Pathology, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Germany

⁴⁰Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany

⁴¹Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany

⁴²Institute of Neuropathology, University of Giessen, Giessen, Germany

⁴³Pediatrics III, University Hospital Essen, Essen, Germany

⁴⁴Division of Neuro Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA

⁴⁵Department of Oncology, University Children's Hospital, Zurich, Switzerland

⁴⁶Department of Life Sciences and Public Health, Università Cattolica Sacro Cuore, Rome, Italy

⁴⁷Department of Neuropathology, University Hospital Bonn, Bonn, Germany

⁴⁸Swabian Children's Cancer Center, Pediatric and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany

⁴⁹Department of Pediatric and Adolescent Oncology/Haematology, Perth Children's Hospital, Nedlands, WA, Australia

⁵⁰Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia

⁵¹Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia

⁵²Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria

⁵³Department of Neuropathology, Institute for Clinical Pathology, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany

⁵⁴Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australia Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia

⁵⁵Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany

⁵⁶German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany

⁵⁷Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, German HIT-LOGGIC-Registry for Children and Adolescents with Low-Grade Glioma, Department of Pediatric Oncology and Hematology, Berlin, Germany

⁵⁸Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

(Affiliations continued on next page)

Nada Jabado,^{68,69} Barbara C. Jones,^{1,5,28} Chris Jones,⁷⁰ Matthias A. Karajannis,⁷¹ Ralf Ketter,⁷² Patricia Kohlhof,⁷³ Uwe Kordes,⁷⁴ Annekathrin Reinhardt,^{3,4} Christian Kölsche,⁷⁵ Katrin Lamszus,⁷⁶ Peter Lichter,^{37,77} Sybren L.N. Maas,^{78,79} Christian Mawrin,⁸⁰ Till Milde,^{1,27,81} Michel Mittelbronn,⁸² Camelia-Maria Monoranu,⁸³ Wolf Mueller,⁸⁴ Martin Mynarek,^{10,74} Paul A. Northcott,^{85,86} Kristian W. Pajtler,^{1,2,28} Werner Paulus,²¹ Arie Perry,⁸⁷ Ingmar Blümcke,⁸⁸ Karl H. Plate,^{6,7,8} Michael Platten,^{37,89,90,91,92} Matthias Preusser,³⁵ Torsten Pietsch,⁹³ Marco Prinz,^{94,95} Guido Reifenberger,⁹⁶ Bjarne W. Kristensen,^{97,98} Marcel Kool,^{1,2,37,99,100} Volker Hovestadt,^{101,102,103} David W. Ellison,¹⁰⁴ Thomas S. Jacques,¹⁰⁵ Pascale Varlet,¹⁰⁶ Nima Etminan,¹⁰⁷ Till Acker,⁴² Michael Weller,¹⁰⁸ Christine L. White,¹⁰⁹

(Author list continued on next page)

⁵⁹Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark

⁶⁰Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany

⁶¹Pediatrics and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg and Bavarian Cancer Research Center/KIONET Bavaria, Augsburg, Bavaria, Germany

⁶²Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany

⁶³Institute of Neuropathology and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Germany, Research Institute Children's Cancer Center Hamburg, Hamburg, Germany

⁶⁴Institute of Neuropathology, Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany

⁶⁵Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany

⁶⁶Department of Neurosurgery, Justus-Liebig University, Giessen, Germany

⁶⁷Institute of Human Genetics, University Duisburg-Essen, Essen, Germany

⁶⁸Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada

⁶⁹Department of Human Genetics, McGill University, Montreal, QC, Canada

⁷⁰Division of Molecular Pathology, The Institute of Cancer Research (ICR), Sutton, Surrey, UK

⁷¹Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

⁷²Department of Neurosurgery, Saarland University, Medical School, Homburg, Germany

⁷³Department for Pathology, Katharinenhospital Stuttgart, Stuttgart, Germany

⁷⁴Department of Pediatric Hematology/Oncology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany

⁷⁵Institute of Pathology, LMU Munich, Munich, Germany

⁷⁶Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

⁷⁷Division of Molecular Genetics, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany

⁷⁸Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands

⁷⁹Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands

⁸⁰Department of Neuropathology, Otto von Guericke University, Magdeburg, Germany

⁸¹Department of Pediatrics, Jena University Hospital and Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany

⁸²Luxembourg National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Luxembourg Centre of Neuropathology (LCNP), Luxembourg Centre for Systems Biomedicine (LCSB), Faculty of Science, Technology and Medicine (FSTM) and Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg

⁸³Institute of Pathology, Department of Neuropathology, University of Würzburg, Würzburg, Germany

⁸⁴Department of Neuropathology, University of Leipzig, Leipzig, Germany

⁸⁵Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA

⁸⁶Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA

⁸⁷Departments of Pathology and Neurological Surgery, UCSF, San Francisco, CA, USA

⁸⁸Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Partner of the European Reference Network (ERN) EpiCARE, Erlangen, Germany

⁸⁹Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany

⁹⁰Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany

⁹¹Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany

⁹²DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany

⁹³Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany

⁹⁴Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany

⁹⁵Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany

⁹⁶Institute of Neuropathology, Medical Faculty, and University Hospital Düsseldorf, Heinrich Heine University, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany

⁹⁷Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark

⁹⁸Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

⁹⁹Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands

¹⁰⁰University Medical Center Utrecht, Utrecht, the Netherlands

(Affiliations continued on next page)

Olaf Witt,^{1,27,28} Christel Herold-Mende,¹¹⁰ Jürgen Debus,^{37,111,112,113} Sandro Krieg,¹¹⁴ Wolfgang Wick,^{115,116} Matija Snuderl,²⁵ Ken Aldape,¹⁶ Sebastian Brandner,^{117,118} Cynthia Hawkins,^{30,119,120} Craig Horbinski,¹²¹ Christian Thomas,²¹ Pieter Wesseling,^{101,122} Andreas von Deimling,^{3,4} David Capper,^{18,19} Stefan M. Pfister,^{1,2,28,37} David T.W. Jones,^{1,5,123,*} and Felix Sahm^{1,3,4,123,*}

¹⁰¹Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

¹⁰²Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA

¹⁰³Broad Institute of MIT and Harvard, Cambridge, MA, USA

¹⁰⁴Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA

¹⁰⁵Geoffrey Jefferson Brain Research Centre, Division of Neuroscience, School of Biology, University of Manchester, Manchester, UK

¹⁰⁶Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France

¹⁰⁷Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany

¹⁰⁸Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland

¹⁰⁹Victorian Clinical Genetics Services, Parkville, VIC, Australia

¹¹⁰Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Medical Faculty Heidelberg, Heidelberg, Germany

¹¹¹Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany

¹¹²Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany

¹¹³Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

¹¹⁴Department of Neurosurgery, Heidelberg University, Heidelberg, Germany

¹¹⁵Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany

¹¹⁶Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany

¹¹⁷Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK

¹¹⁸Department of Neurodegenerative Disease, University College London, Institute of Neurology, London, UK

¹¹⁹Division of Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada

¹²⁰Division of Pathology, Hospital for Sick Children, Toronto, ON, Canada

¹²¹Department of Pathology, Northwestern University, Chicago, IL, USA

¹²²Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands

¹²³These authors contributed equally

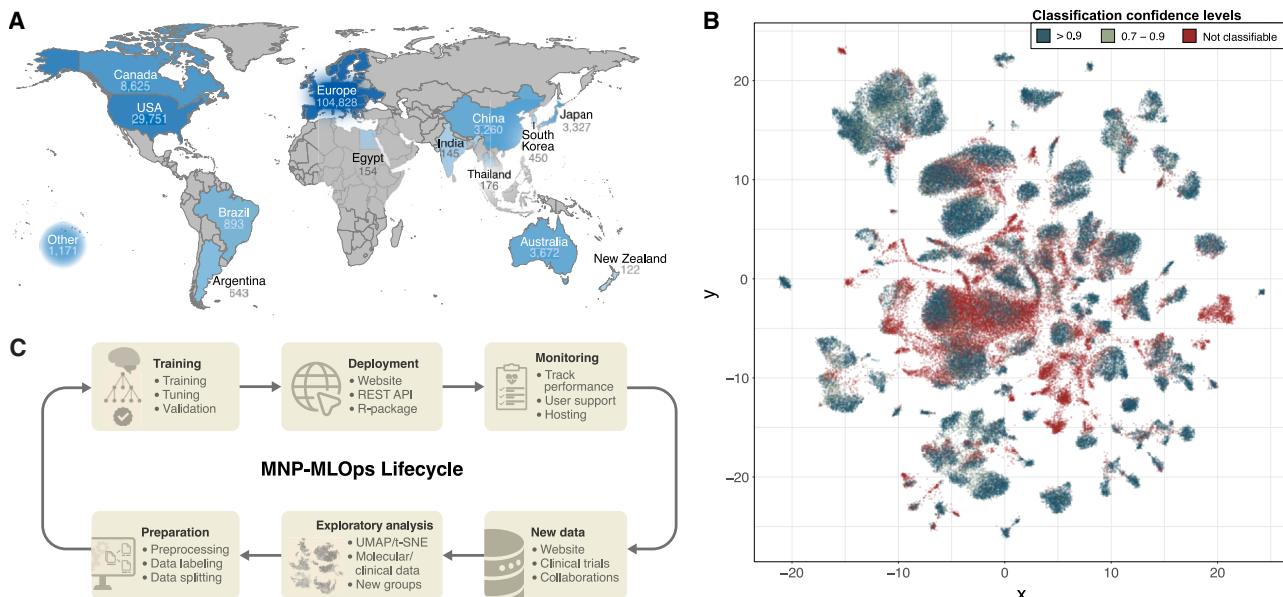
¹²⁴Lead contact

*Correspondence: m.sill@kitz-heidelberg.de (M.S.), david.jones@kitz-heidelberg.de (D.T.W.J.), felix.sahm@med.uni-heidelberg.de (F.S.)

<https://doi.org/10.1016/j.ccel.2025.11.002>

Comprehensive Cancer Network (NCCN),² European Association of Neuro-Oncology (EANO),³ International Collaboration on Cancer Reporting (ICCR),⁴ or Royal College of Pathologists (RCPPath UK).⁵

DNA methylation encodes a unique combination of information—the heritable marks of cell-of-origin and changes incurred during tumor initiation and progression. This makes it a stable and reliable resource for tumor typing. Here, we present the diverse landscape of CNS tumors represented by the Heidelberg methylation classifier v12.8 and its utility in clinical routine diagnostics. DNA methylation-based classification of CNS tumors was pioneered with the public release of the Heidelberg CNS tumor classifier v11, which was trained on a reference set of 2,801 samples comprising 91 classes primarily based on the existing WHO tumor types.⁶ The classifier, and all subsequent updates, were made available to the scientific community for the past 9 years (2016–2025) on the molecularneuropathology.org platform. At the time of data freeze in October 2024, over 160,000 profiles worldwide were analyzed on the platform. In addition to analyses and database management for the community, the platform included an end user license agreement (EULA) that offered users to share data for further development. This facilitated the accumulation of diverse DNA methylation profiles from across the globe. As the data repository expanded, a considerable number of uploaded samples failed to align with any of the 91 classes in v11, thus prompting exploratory analyses that led to identification of previously undefined or misclassified


tumor types. We mainly employed unsupervised approaches to identify novel clusters using methylation data with further validation relying on ancillary methods like DNA/RNA sequencing, immunohistochemistry, etc. Taken together, these findings laid the groundwork for creating an updated reference set for v12.8. Multiple novel methylation-defined or -supported entities from v12.8 are now recognized by the WHO 2021 guidelines, such as the diffuse glioneuronal tumor with oligodendroglialike features and nuclear clusters (DGONC).⁷ The classifier has been utilized and validated in independent cohorts across diverse regions and setups, demonstrating its universal robustness and potential clinical utility.

The value of methylation classification primarily lies in overcoming the limitations of classical histology-dependent methods. Owing to its robust nature, it overcomes potential inter-observer variability in reporting and the hypothesis-driven nature of targeted testing. Furthermore, methylation profiling using methylation arrays offers prognostic information like copy-number data and MGMT promoter methylation status in addition to methylation classification in a single assay.

RESULTS

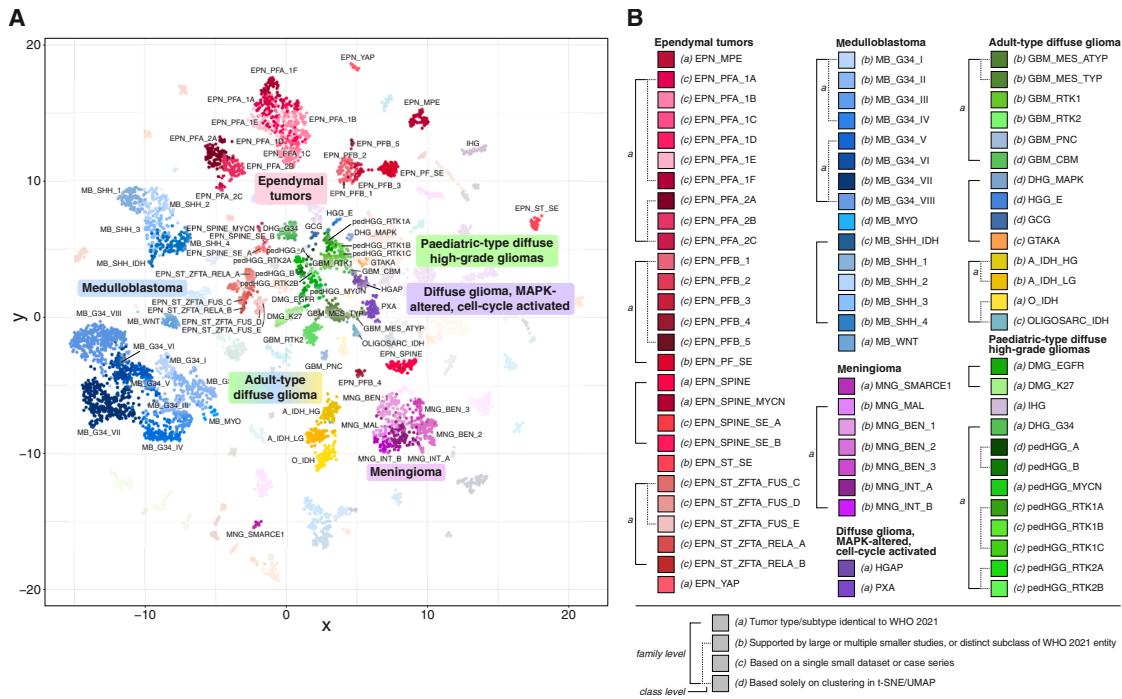
v12.8 reference set expands classification to 184 hierarchical subclasses

Building upon the reference set of the previously published Heidelberg methylation classifier v11 comprising 2,801 samples

Figure 1. Overview of the molecularneuropathology.org platform and its utilization

(A) Global distribution of sample uploads to molecularneuropathology.org from October 2016 to February 2025.

(B) UMAP projection of 97,213 CNS tumor samples, dots are colored by the v11 classifier confidence score levels for each sample, as indicated in the legend. The x and y axes represent the first and second dimensions of the non-linear UMAP projection, respectively.


(C) Flow diagram illustrating the Machine Learning Operations (MLOps) life cycle used for model training, validation, deployment, and maintenance for the MNP classifier.

and our large database of over 160,000 samples (Figure 1), we expanded the reference set for v12.8 to 7,495 CNS methylation profiles (Figures 2 and S1). Of these, approximately 19% derive from the previous v11 cohort, preserving continuity and consistency with established diagnostic categories. An additional 11% originate from user submissions via our publicly accessible web platform. While these represent a relatively small proportion of the final training dataset, the diversity of the uploaded samples played a valuable supporting role in identifying new tumor entities. The remaining samples were either diagnostic cases added to increase the sample size of previously underrepresented classes or sourced from institutional collaborations, particularly those focusing on well-characterized entities such as meningiomas,⁸ posterior fossa (PF) A and PFB ependymomas,^{9,10} and medulloblastomas.^{11,12}

To leverage the growing volume of methylation profiles, we regularly performed non-linear dimensionality reduction analyses—specifically, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) (Figure 3A). These methods enabled unsupervised exploratory data analysis, revealing new, distinct clusters constituting samples that were previously unclassifiable under the original (v11) framework (Figures 3B, 3C, and S2). Visual inspection of t-SNE and UMAP plots, in combination with molecular characterization and clinical data of samples helped differentiate relevant emerging tumor clusters from known entities, prompting identification of novel subclasses and refinement of existing ones. In addition, methylation profiling using methylation arrays yields genome-wide copy-number variation (CNV) data and MGMT (methylated-DNA-protein-cysteine methyltransferase)

promoter methylation status independently of methylation classification from the same assay. This unified assay is highly efficient and conserves precious tissue in addition to being essential for contemporary CNS tumor diagnostics. Copy number data robustly identifies pathognomonic and prognostic alterations in multiple entities particularly diffuse gliomas and meningiomas. This information is indispensable for characterizing emerging entities from unsupervised clustering of methylation data. For example, the newly described glioneuronal tumor with ATRX alteration (GTAKA) subclass is known to harbor homozygous *CDKN2A/B* deletions in ~50% of cases, *ATRX* alterations and importantly recurrent targetable NTRK fusions (Figure S3A).¹³ In the same way, the novel entity DGONC was found to harbor a characteristic monosomy of chromosome 14 or homozygous *CDKN2A/B* deletion (Figure S3B).⁷ Thus, methylation-based classification can directly guide the search for actionable therapeutic alterations. Similarly, the CNV profile can provide strong evidence for other targetable alterations, such as the characteristic tandem duplication at the *BRAF* locus indicative of a *KIAA1549:BRAF* fusion, which can be confirmed by transcript-level analysis (Figure S4). This multi-faceted approach, combining unsupervised clustering with detailed CNV and clinical and molecular analysis, allowed us to systematically incorporate these new entities, effectively doubling the total number of subclasses to 184, with the newly added entities detailed in Table 1.

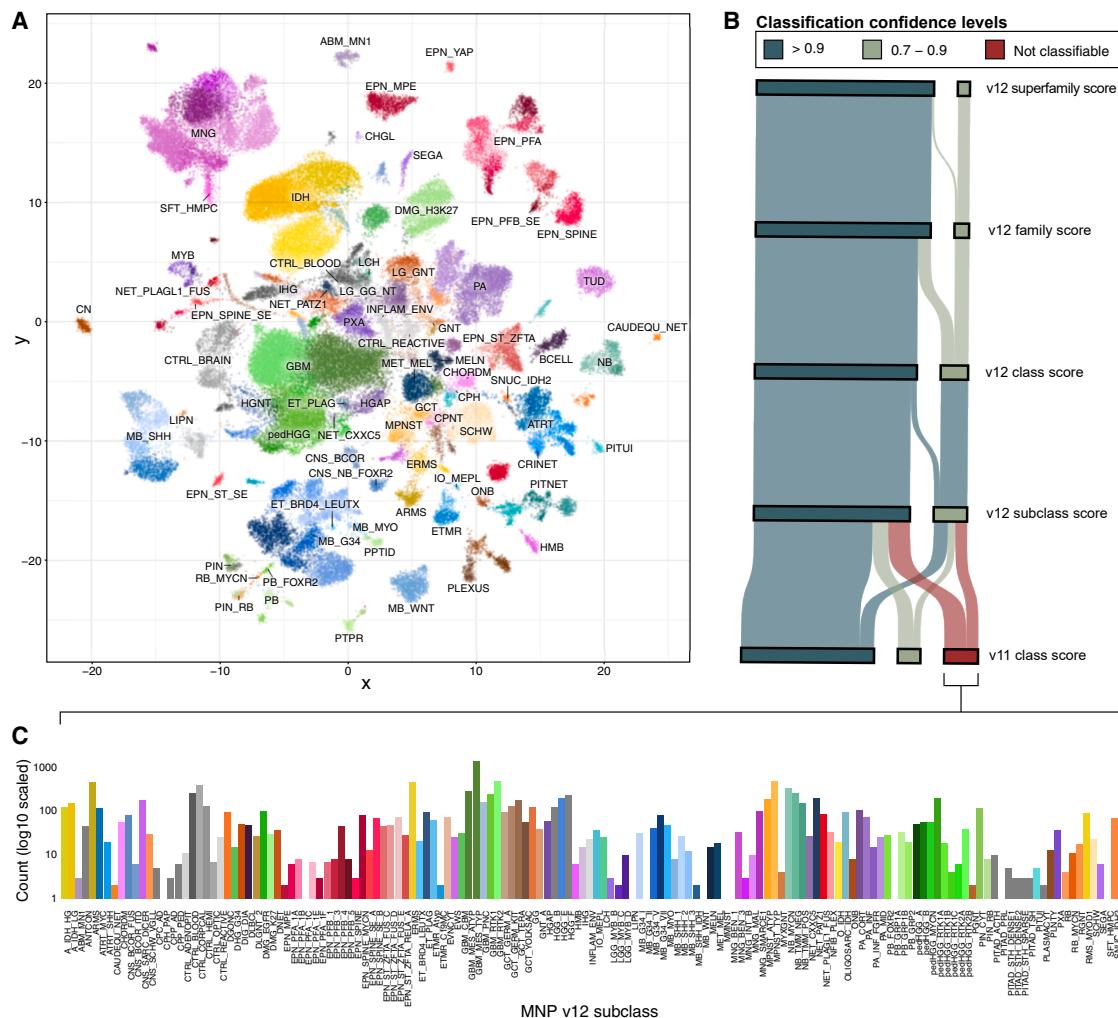
Alongside the expansion of tumor classes, we introduced a four-tier hierarchical structure (Figures 2 and S1; Table S1) designed to reflect the complex biological relationships between tumor entities. While subclasses denote the highest granularity,

Figure 2. Training dataset for v12.8

(A) UMAP projection of 7,495 samples used for training the v12.8 classifier. The x and y axes represent the first and second dimensions of the non-linear UMAP projection, respectively.

(B) Legend indicating color code for subclasses shown in (A). Letters in rounded brackets before abbreviation of the subclass indicate “evidence level” for the respective subclass. Each broad category shown in bold in the legend is a superfamily, families are indicated using a solid bracket on the second level adjacent to the colored blocks, classes are indicated using a dotted-line bracket at the first level. Due to the large number of subclasses, only six superfamilies are highlighted here. The remaining superfamilies and their corresponding families, classes, and subclasses are shown in Figure S1.

See also Figure S1; Table S1.


established diagnostic categories, supported by robust clinical, histological, and molecular evidence, generally reside at the “family” or “class” level. Newly recognized entities, often defined by subtle epigenetic variations and with clinical relevance that may still be unresolved, are usually assigned to the subclass level. Moreover, superfamilies commonly correspond to the broad WHO categories. As a conservative approach, the classifier defaults to higher-tier assignments if subclass boundaries are not clearly defined. This hierarchical system is meant to provide a framework that mirrors the clinical and biological complexity of CNS tumors. Furthermore, we formulated evidence levels as annotations for each entity. These annotations, together with relevant publications, are listed in Table S1 and provide guidance on the available information about the entities and their alignment with the current WHO classification (Figures 2 and S1). Level a refers to tumor entities identical to the WHO 2021. Level b refers to entities defined by large single or more than one smaller dataset published describing the type/subtype as molecularly and/or clinically distinct, or the methylation class represents a distinct fraction of an established WHO 2021 tumor class. Level c refers to entities described by a single small dataset or case series. Level d refers to entities that are solely based on clustering signals in a t-SNE or UMAP. The annotation is typically provided at the most granular layer, and in addition at a higher layer if the latter matches a WHO type or subtype. The definitions, hierarchical levels and annotations

were curated and reviewed by an international group of neuropathologists.

v12.8 classifier achieves 95% cross-validated accuracy while providing well-calibrated, probabilistic confidence scores

To train the classification model, we followed the random forest-based approach described previously.^{6,43} We evaluated the performance of the classifier using a 5-fold nested cross-validation scheme. All subclasses achieved a balanced accuracy greater than 0.75, with 175 out of 184 subclasses exceeding 0.9 in balanced accuracy (Figure 4A).

The classifier provides probabilistic confidence scores for each prediction. Our new hierarchical system leverages these scores by summing the probabilities of mutually exclusive subclasses to calculate parent-category probabilities. This approach provides more robust diagnostic guidance at higher tiers of the hierarchy. As observed with the v11 classifier, most “errors” occur between closely related subclasses or classes, such as among different subclasses (*) of posterior fossa group A (EPN_PFA_*) ependymomas (Figure 4B), between subclasses of group 3 and 4 medulloblastomas (MB_G34_*), or among benign meningioma subclasses (MNG_BEN_*). While some of these newly delineated subclasses indeed correlate with different prognostic outcomes, as described in their respective publications, most subclasses currently lack direct clinical

Figure 3. UMAP projection comparing classification performance of mnp_v11b6 and mnp_v12.8

(A) Methylation profiles of 97,213 CNS tumor samples, including the v12.8 training data, classified using the v12.8 classifier, where all samples achieve a classification score of ≥ 0.7 and are colored according to the v12.8 color scheme for the subclass. The labels are the abbreviation for the family level. The x and y axes represent the first and second dimensions of the non-linear UMAP projection, respectively.

(B) Sankey plot showing scores for predictions with the v11 classifier and hierarchical levels of the v12.8 classifier respectively for the samples illustrated in (A).

(C) Bar-plot indicates log10-scaled number of v12 subclass predictions for samples not classifiable using v11.

See also Figure S2.

implications, making aggregated probability scores at higher hierarchical levels sufficient for guiding diagnostic decisions according to current knowledge.

Overall, the classifier achieved a 95% subclass-level accuracy and a Brier score of 0.028. In multiclass classification, the Brier score measures the mean squared difference between predicted probabilities (i.e., calibrated classifier scores) and observed class frequencies, indicating that the probability estimates are exceptionally well-calibrated and outperform those of the original v11 classifier (Figures 4C–4E).

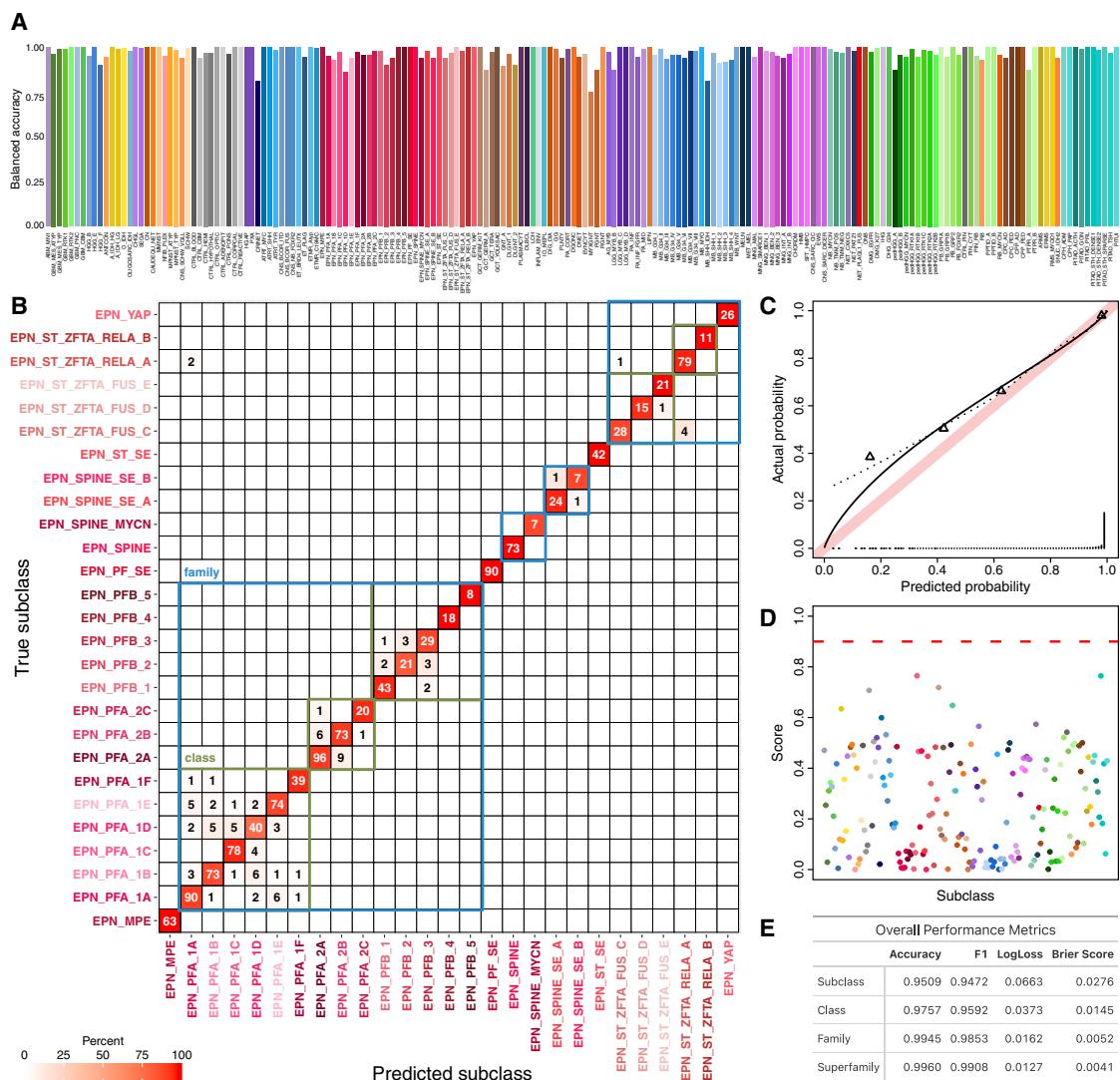
The 0.9 confidence threshold provides a reliable cutoff for clinical use

Similar to the previous v11 classifier, we recommend a threshold of 0.9 across all tumor entities at the family level in v12.8. This

threshold was selected because it showed good overall performance in our cross-validation across all subclasses in both the v11 and v12.8 training datasets, and because it is straightforward to communicate in clinical practice. In addition, we performed one-vs-all receiver operating characteristics (ROC) analyses for each subclass against all others and selected the threshold that maximizes Youden's index, thus optimally balancing sensitivity and specificity (Figure 4D; Table S1). The highest Youden-based threshold was 0.77, indicating that a 0.9 cutoff is somewhat conservative for most subclasses. Nevertheless, applying a 0.9 threshold helps maintain high sensitivity for certain subclasses. Ultimately, the well-calibrated probability scores provided by our classifier allow users to make informed decision-making in the context of other available complementary clinical, histological, and molecular data.⁴⁴

Table 1. Overview of newly added or expanded tumor classes in the v12.8 classifier

Broad Tumor Category	Tumor Class/Subclass and Key Features	Reference(s)
Meningiomas	Subclasses of Meningioma	Sahm et al. ⁸
	Clear cell meningioma (<i>SMARCE1</i> -mutant)	Sievers et al. ¹⁴
Ependymomas	Ependymoma, subtypes PFA and PFB	Pajtler et al. ⁹ ; Cavalli et al. ¹⁰
	Ependymoma, <i>ZFTA</i> -fused	Zheng et al. ¹⁵
	Spinal ependymoma, <i>MYCN</i> -amplified	Ghasemi et al. ¹⁶
Medulloblastomas	Wingless class (WNT), subtypes of Sonic Hedgehog (SHH) medulloblastomas and consensus subtypes of non-WNT/non-SHH medulloblastomas.	Cavalli et al. ¹¹ ; Sharma et al. ¹² ; Taylor et al. ¹⁷ ; Hovestadt et al. ¹⁸
Gliomas & Glioneuronal Tumors	Diffuse leptomeningeal glioneuronal tumors (DLGNT)	Deng et al. ¹⁹
	Diffuse glioneuronal tumor with nuclear clusters (DGONC)	Deng et al. ⁷
	IDH-mutant oligosarcomas	Suwala et al. ²⁰
	Glioblastomas with primitive neuronal component	Suwala et al. ²¹
	Glioneuronal tumor with <i>ATRX</i> alteration (GATAK)	Bogumil et al. ¹³
	Gliomas with <i>MYB/MYBL1</i> alteration	Chung et al. ²² ; Wefers et al. ²³
Embryonal & Neuroepithelial Tumors	Cribiform neuroepithelial tumors (<i>SMARCB1</i> -deficient)	Johann et al. ²⁴
	CNS neuroblastoma, <i>FOXR2</i> -activated	Tauziède-Espriat et al. ²⁵
	Embryonal tumors with <i>BRD4::LEUTX</i> fusion	Andreiulolo et al. ²⁶
	Embryonal tumors with <i>PLAG</i> -family amplification	Keck et al. ²⁷
	Neuroepithelial tumors with <i>PATZ1</i> -fusions	Alhalabi et al. ²⁸
	CNS Tumor with <i>BCOR</i> Internal Tandem Duplication	Sturm et al. ²⁹
	CNS tumors with <i>EP300::BCOR</i> fusion	Tauziède-Espriat et al. ³⁰
Retinal Tumors	Intraocular medulloepithelioma	Zheng et al. ¹⁵
	Retinoblastoma, <i>MYCN</i> -activated	Ghasemi et al. ¹⁶
Sarcomas & Mesenchymal Tumors	Rhabdomyosarcoma subtypes	Clay et al. ³¹ ; Mahoney et al. ³²
	Malignant melanotic nerve sheath tumors	Terry et al. ³³ ; Koelsche et al. ³⁴
	Plexiform neurofibromas	Grit et al. ³⁵
	Langerhans cell histiocytosis	Koelsche et al. ³⁶
Other CNS & Related Tumors	Germ cell tumors	Fukushima et al. ³⁷ ; Williams et al. ³⁸ ; Kubota et al. ³⁹
	Sinonasal undifferentiated carcinoma, <i>IDH2</i> -mutant	Dogan et al. ⁴⁰
	Pineal parenchymal tumors of intermediate differentiation	Pfaff et al. ⁴¹
	Neuroblastomas (subtypes)	Henrich et al. ⁴²


See also Figures S3 and S4.

v12.8 outperforms v11 and resolves previously unclassifiable tumors

Among the samples in our methylation database, 97,213 achieved a v12.8 classifier score of ≥ 0.7 at the subclass level (Figure 3A). When applying the v11 classifier to this cohort, only 79,749 samples (82%) could be classified with a confidence score of ≥ 0.7 (Figures 3B and 3C). These previously unclassifiable cases were successfully classified into newly identified subclasses as well as some existing classes, thus benefiting from the increased training data and refined classification scheme in v12.8. Of the samples in the latter category (v11 score < 0.7), 2,128 (12%) were classified as glioblastoma, IDH-wild type, mesenchymal type, 1,422 (8%) as glioblastoma, IDH-wild type,

RTK1/RTK2, and 587 (3%) as IDH-mutant astrocytoma with scores ≥ 0.7 , thus underscoring the higher confidence of the v12.8 classifier in previously established entities. Overall, we demonstrate the improved performance of v12.8, which accommodates newly discovered tumor types and provides more robust classification for previously recognized entities.

The number of newly identified classes has steadily increased over the past years, now reaching a plateau state. To further explore the dynamics of rare subclass discovery, we performed an analysis of 14 subclasses with ≤ 50 cases each in the full cohort of 97,213 CNS tumors (Figure S2). The model projects that, given a throughput of 1,236 cases per month, it would take on average 2.9 years to identify 10 new cases of a typical

Figure 4. 5-fold nested cross-validation performance of the v12.8 classifier

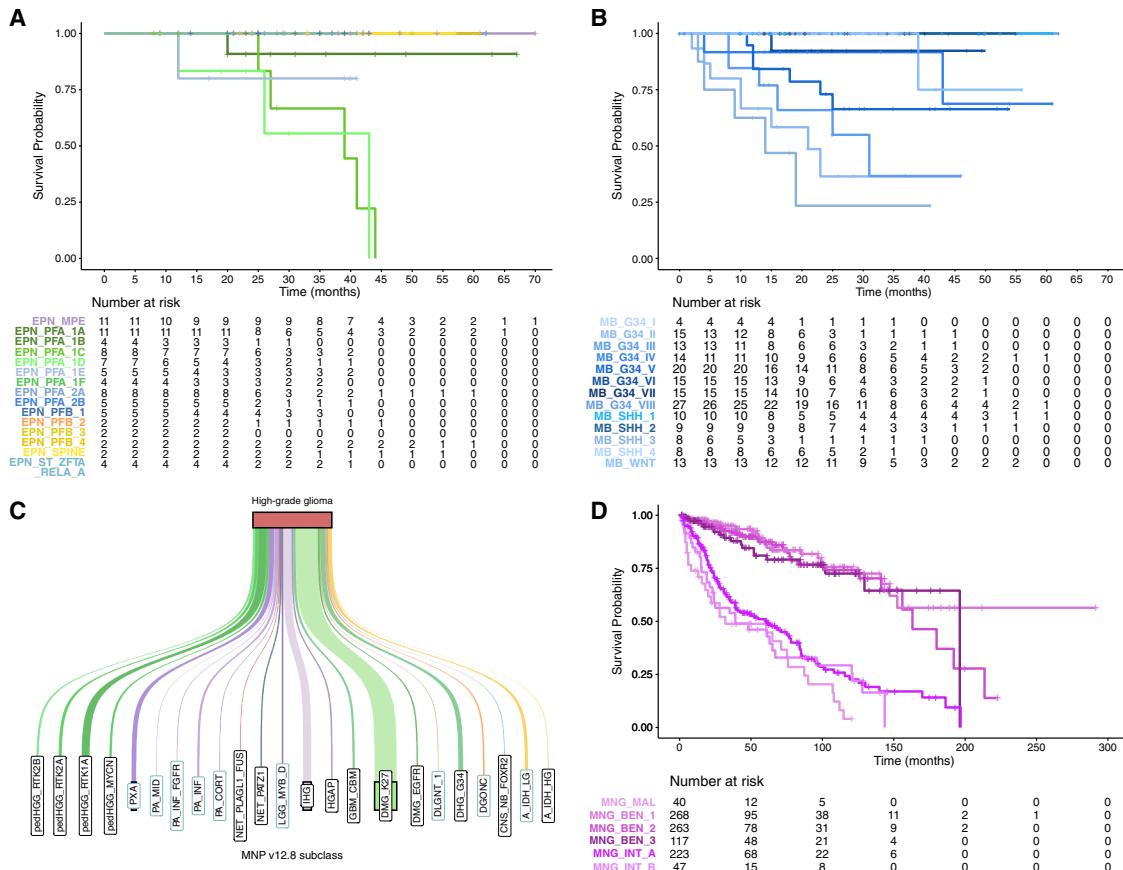
(A) Bar plot showing the balanced accuracy for each of the 184 subclasses, as derived from 5-fold nested cross-validation.

(B) Confusion matrix focusing on the ependymoma superfamily, where the majority of misclassifications occur between subclasses that belong to the same class or family (indicated by green and blue rectangles, respectively).

(C) Calibration plot comparing predicted probabilities with observed outcomes, illustrating the degree of score calibration across subclasses.

(D) Scatterplot of subclass-specific Youden-optimal thresholds with color-coded tumor classes and a red dashed line at 0.9 marking the recommended threshold.

(E) Table summarizing overall performance metrics: accuracy, F1-score, log loss, and Brier score, evaluated at each hierarchical level (subclass, class, family, superfamily).


See also Table S1.

rare subclass. In light of nearly a decade of continuous data collection, we posit that the likelihood that entirely new and clearly distinct entities remain undiscovered is therefore low, although this cannot be excluded.

v12.8 subclasses show prognostic relevance in independent cohorts

To show the clinical potential of the v12.8 classifier, we analyzed data from the prospective, population-based Molecular Neuropathology 2.0 (MNP 2.0) study,⁴⁵ conducted within the German

pediatric neuro-oncology “Treatment Network HIT”, which featured blinded central neuropathological review alongside molecular testing. In this cohort of over 1,200 newly diagnosed pediatric CNS tumor patients, the combined application of DNA methylation profiling and targeted panel sequencing improved the accuracy of tumor classification and identified cases where molecular data clarified ambiguous histology. Kaplan-Meier analysis of 80 ependymoma cases and 171 medulloblastoma cases, grouped by their v12.8 methylation subclass, revealed distinct survival curves for each subclass (Figures 5A and 5B),

Figure 5. Prognostic performance of the v12.8 classifier compared to alternative explanatory variables in Cox proportional hazards models

(A) Kaplan-Meier estimates of overall survival for ependymoma patients from the MNP2.0 cohort stratified by v12.8 methylation subclass. The x axis represents time in months, and the y axis represents the survival probability.

(B) Kaplan-Meier estimates of overall survival for medulloblastoma patients from the MNP2.0 cohort stratified by v12.8 methylation subclass. The x axis represents time in months, and the y axis represents the survival probability.

(C) Sankey plot showing methylation subclass predictions (score >0.9) for histologically assigned high-grade gliomas in the MNP2.0 cohort. Subclasses outlined in blue indicate low grade tumors.

(D) Kaplan-Meier estimates of progression-free survival from the meningioma cohort⁴⁶ stratified by v12.8 methylation subclass. The x axis represents time in months, and the y axis represents the survival probability. Color of curves indicates v12.8 subclass.

See also Figure S5.

highlighting meaningful prognostic differences. One important finding of the MNP2.0 study was that a subset of tumors originally diagnosed as high-grade gliomas (HGG) by conventional histopathology were classified as low-grade gliomas (LGG) when methylation results were taken into account; these patients showed more favorable outcomes during a median follow-up of 2.5 years, indicating that methylation-based classification could guide less intensive therapy. In line with this finding, Figure 5C shows a Sankey plot of 96 cases initially reported as “HGG”. Of these, 22% were assigned to a lower grade tumor subclass with a score of at least 0.9 by the v12.8 classifier.

In another large study of meningiomas, the DNA-methylation family assignment was combined with WHO histological grading and chromosomal CNV data to develop an integrated molecular-morphologic score for risk stratification that significantly outperformed WHO grading alone.^{46,47} To illustrate this potential of v12.8 methylation subclasses for risk stratification of meningiomas, Figure 5D shows the distinct Kaplan-Meier curves of pre-

dicted methylation subclasses for 958 meningioma patients included in this cohort. To further illustrate the clinical relevance of subclass annotations, we provide additional survival analyses in Figure S5. These include overall survival of patients from the HIT-2000 trial stratified by non-WNT/non-SHH medulloblastoma subclasses⁴⁸ and event-free survival of patients from the MNP2 study assigned to a specific subclass of the “low-grade glial/glioneuronal/neuroepithelial tumor” superfamily.

Overall, these three studies exemplify that DNA methylation-based profiling allows for more accurate classification and can be used for improved risk stratification of patients.

DISCUSSION

Identification of emerging clusters, designation as subclasses and classes, and their subsequent implementation into diagnostic guidelines is inherently an iterative process. The recent work of the cIMPACT-NOW consortium,⁴⁹ endorsed by the

International Society of Neuropathology, offers a framework for systematically evaluating emerging signals that suggest putative new tumor entities. Their guidelines recommend gathering comprehensive molecular, histopathological, and clinical outcome data before classifying any newly identified epigenetic cluster as a distinct diagnostic entity. The expanded Heidelberg Methylation Classifier (v12.8) described here embodies this iterative approach, wherein novel putative entities emerging from exploratory t-SNE and UMAP clustering undergo continuous scrutiny and validation by the international neuro-oncology community.

Although conceived primarily as a research tool, the Heidelberg Methylation Classifier has demonstrated profound diagnostic potential over time as reflected by its inclusion in multiple international neuro-oncology guidelines. The classifier possesses a distinct advantage owing to its scale and the comprehensive, meticulously curated reference data. While hypothesis-driven methods are inherently restrictive, our large data repository combined with an unsupervised approach enabled the precise classification of established tumor entities and the identification of previously uncharacterized, ultra-rare entities that would not be feasible with smaller cohorts.

The v12.8 expansion comes with a clear hierarchical structure and evidence level annotation, reflecting definitions and relevance of granular entities but also emphasizes the importance of shared terminology. Historically, subtle discrepancies have existed between formal guidelines and the subclasses output by the classifier. These discrepancies partly stem from the fact that diagnostic guidelines evolve on the basis of established clinical evidence, whereas classifier outputs may temporarily adopt more provisional (and often more granular) subclass designations when new molecular subgroups first emerge. To bridge this gap, a global panel of neuropathologists and molecular neuro-oncologists convened to refine and align subclass annotations, culminating in the updated nomenclature for both newly discovered and long-standing tumor entities identified by the classifier. Such efforts ensure that the classifier keeps pace with refinements in disease knowledge while maintaining coherence with diagnostic standards, ultimately improving acceptance and global dissemination.

Application of DNA methylation classification in routine diagnostics has advanced with unprecedented speed, catalyzed by the demonstrated clinical value of methylation-based tumor subtyping in independent prospective studies.^{50–52} Adoption of the technology can be challenging for users new to molecular testing based on high-dimensional data, raising questions regarding robust quality control and cross-validation of results. Although multiple classifier tools may emerge—possibly using divergent statistical strategies—the potential redundancy could bolster procedural safety.⁴⁹ At the same time, discordant outcomes among classifiers may generate confusion, particularly if each tool adopts slightly different nomenclature or poorly calibrated confidence scores. Clear consensus, transparent communication, and adherence to regulatory guidelines will be essential for ensuring that the field continues to move toward improved and harmonized, rather than fragmented, diagnostic utility.

Recent work by Patel et al.⁵³ introduced the MNP-Flex classifier, trained on the same v12.8 reference dataset, which enables accurate classification from methylation data generated by

different sequencing-based methods. Likewise, classifiers trained on v11 reference data were designed for use with ultra-sparse data obtained in intraoperative settings,^{54,55} demonstrating that such pipelines can be applied to third-generation sequencing-derived methylation data. This demonstrates that methylation-based classification of CNS tumors is not limited to arrays but can potentially be applied across essentially all current and emerging methylation profiling platforms.

The impact of methylation profiling has also extended beyond CNS tumors. A DNA methylation classifier for sarcomas³⁶ was introduced shortly after the original CNS classifier and has recently been updated to version 13,⁵⁶ underscoring the broad applicability of this approach across tumor types. As an example, tumors with BCOR internal tandem duplications in the CNS and in sarcomas such as clear cell sarcoma of the kidney show highly similar DNA methylation profiles, reflecting shared lineage features.⁵⁷

Overall, the Heidelberg Methylation Classifier v12.8 represents more than an incremental technical update, it embodies a collective effort to integrate clinical routine, cutting-edge translational research, and global equity. Ultimately, ongoing collaboration among researchers, clinicians and regulatory bodies will be crucial for realizing the full potential of methylation classification to improve patient care in neuro-oncology. Looking ahead, the impact of such developments will be defined not only by their precision but by the ability to democratize access to such advanced diagnostic methods for patients in diverse healthcare settings.

Limitations of the study

Despite its demonstrated diagnostic potential, the current approach has limitations, primarily rooted in its reliance on microarray technology. There are a substantial capital investment and high per-sample cost, thus creating significant access barriers, particularly for institutions with limited resources and throughput. This has resulted in an under-representation of data from low- and middle-income countries (LMICs) particularly in the global south, despite the high incidence rate in these regions. Furthermore, this reliance creates a dependency on a single product and its commercial life cycle. A key lesson from nearly a decade of providing this service is how challenging it is to maintain a stable platform when new array versions are released, as each update requires significant bioinformatic adaptation to ensure compatibility. This highlights the critical tension between technological advancement and the need for robust, validated clinical workflows. To begin addressing barriers of cost and global inequity, we have co-founded the Molecular Neuro-Pathology Outreach (MNP-Outreach) Consortium. The mission of this initiative is to facilitate the global adoption of methylation-based classification in LMICs. By fostering collaboration, we aim not only to improve diagnostic access but also to fill critical knowledge gaps regarding the molecular landscape of CNS tumors in underrepresented populations from the global South.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Martin Sill (m.sill@kitz.de).

Materials availability

This study did not generate new materials; all resources used are commercially or publicly available.

Data and code availability

- The v12.8 raw reference dataset, containing sensitive personal health information, is available through the German Human Genome-Phenome Archive (GHGA) under reference number GHGAS89861553411214. Access is controlled for data protection and granted for non-commercial research use following the execution of a Data Transfer Agreement (DTA). The v12.8 classifier is publicly accessible under: <https://app.epignostix.com/>. The code used to train the classifier is publicly available under: https://github.com/mwsill/mnp_training.
- <https://github.com/mematt/m4calibrated450k>.
- Any additional information required to reanalyze the data reported in this paper is available from the [lead contact](#) upon request.

ACKNOWLEDGMENTS

We thank U. Lass, A. Habel, and I. Oezen for their technical and administrative support. In addition, we thank M. Schick and M. Bewerunge-Hudler from the Microarray unit of the Genomics and Proteomics Core Facility (DKFZ), and the neuropathology laboratory of the University Hospital Heidelberg for DNA-methylation services, and T. Splettstoesser for helping with graphics design. M.A.K. was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748 to Memorial Sloan Kettering Cancer Center. G.F. and S.T. were funded by the DKS2020.02 research grant for HIT-REZ-Registry, German Childhood Cancer Foundation. M. Snuderl is supported by NINDS grant R01-NS122987.

AUTHOR CONTRIBUTIONS

Conceptualization, M. Sill, D.S., D.T.W.J., F.S., A.v.D., S.M.P., and D.C.; methodology, M. Sill, D.S., D. Sturm, A.P., D.T.W.J., N.J., and P.S.; software, D.S.; classifier training, M. Sill; formal analysis, M. Sill, D.S., D. Sturm, A.P., D.T.W.J., N.J., and P.S.; investigation, all authors; data curation, all authors; critical review of class annotations for the v12.8 reference dataset and input on tumor nomenclature and evidence levels, D.C., F.S., C. Hawkins, C. Horbinski, C.T., K.A., P.W., D.R., A.v.D., S.M.P., M.K., and S.B.; supervision, D.T.W.J., F.S., S.M.P., and A.v.D.; writing – original draft, M. Sill and A.P.; writing – review and editing, M. Sill, A.P., D.S., D.T.W.J., F.S., A.v.D., D.C., and S.M.P.; resources, all authors. All authors read and approved the final manuscript.

DECLARATION OF INTERESTS

M. Sill, D.S., M. Snuderl, A.v.D., S.M.P., D.C., D.T.W.J., and F.S. are co-founders and shareholders of Heidelberg Epignostix GmbH, a company that develops and commercializes DNA methylation-based classifiers for CNS and other tumors, including the Heidelberg CNS Classifier described in this manuscript. M. Sill and N.J. became full-time employees of Heidelberg Epignostix in July 2024, A.P. in December 2024, and D.S. became a part-time employee in November 2024. M. Sill, A.v.D., D.S., D.T.W.J., D.C., V.H., and S.M.P. report patent EP16710700.2 and EP4384959A2. These patents cover the intellectual property for the DNA methylation-based CNS tumor classification method, which is the specific technology described and advanced in this manuscript. M.A.K. was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748 to Memorial Sloan Kettering Cancer Center. G.F. and S.T. were funded by the DKS2020.02 research grant for HIT-REZ-Registry, German Childhood Cancer Foundation. M.W. has received research grants from Novartis, Quercis, and Versameb, and honoraria for lectures, advisory boards, or consulting from Anheart, Bayer, Curevac, Medac, Neurosense, Novartis, Novocure, Orbus, Pfizer, Philogen, Roche, and Servier. M. Snuderl is supported by NINDS grant R01-NS122987 and is scientific advisor/shareholder of Halo Dx, and advisor to Arima Genomics and InnoSIGN, and has received research funding from Lilly USA. The German HIT-LOGGIC-Registry was supported by the Deutsche Kinderkrebsstiftung (DKKS) 2019.06, 2021.03,

and 2023.08). The protocol was approved by the IRB (EA2/030/19). P.H.D. is member of the Alexion Advisory Board on behalf of Charité-Universitätsmedizin Berlin. M.P. has received honoraria for lectures, consultation, or advisory board participation from Bayer, Bristol-Myers Squibb, Novartis, GLG, CMC Contrast, GlaxoSmithKline, Mundipharma, Roche, BMJ Journals, MedMedia, AstraZeneca, AbbVie, Lilly, Medahead, Daiichi Sankyo, Sanofi, Merck Sharp & Dohme, Tocagen, Adastral, Gan & Lee Pharmaceuticals, Janssen, Servier, Miltenyi, Boehringer-Ingelheim, Telix, Medscape, OncLive, Medac, Nerviano Medical Sciences, and ITM Oncologics GmbH. A.S.B. has research support from Daiichi Sankyo and Roche, and honoraria from Roche, Bristol-Myers Squibb, Merck, Daiichi Sankyo, AstraZeneca, CeCaVa, Seagen, Alexion, and Servier, as well as travel support from Roche, Amgen, and AbbVie.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN THE WRITING PROCESS

During the preparation of this work the authors used ChatGPT (OpenAI) in order to refine language, enhance clarity and coherence, and improve overall readability of the manuscript. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**
- **METHOD DETAILS**
 - DNA-methylation array processing
 - CNV analysis
 - MGMT status prediction
 - Non-linear dimension reduction
 - Classifier training
 - Classifier validation
 - RNA sequencing and fusion calling
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at <https://doi.org/10.1016/j.ccel.2025.11.002>.

Received: May 6, 2025

Revised: August 27, 2025

Accepted: November 7, 2025

Published: December 4, 2025

REFERENCES

1. Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., Hawkins, C., Ng, H.K., Pfister, S.M., Reifenberger, G., et al. (2021). The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. *Neuro Oncol.* 23, 1231–1251. <https://doi.org/10.1093/neuonc/noab106>.
2. Horbinski, C., Nabors, L.B., Portnow, J., Baehring, J., Bhatia, A., Bloch, O., Brem, S., Butowski, N., Cannon, D.M., Chao, S., et al. (2023). NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022. *J. Natl. Compr. Canc. Netw.* 21, 12–20. <https://doi.org/10.6004/jnccn.2023.0002>.
3. Sahm, F., Brandner, S., Bertero, L., Capper, D., French, P.J., Figarella-Branger, D., Giangaspero, F., Haberler, C., Hegi, M.E., Kristensen, B.W., et al. (2023). Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and

neuronal tumors; an EANO guideline. *Neuro Oncol.* 25, 1731–1749. <https://doi.org/10.1093/neuonc/noad100>.

- Wesseling, P., Brat, D., Hawkins, C., Komori, T., Lopes, M., and Louis, D. (2024). *Tumours of the Central Nervous System (CNS) Reporting Guide*, 2nd edition (ICCR).
- Brandner, S., Jaunmuktane, Z., Roncaroli, F., Thom, Maria, Merve, A., and Paine, S. (2024). *Dataset for Histopathological Reporting of Tumours of the Central Nervous System in Adults, Including the Pituitary Gland* (Royal College of Pathologists).
- Capper, D., Jones, D.T.W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C., Sahm, F., Chavez, L., Reuss, D.E., et al. (2018). DNA methylation-based classification of central nervous system tumours. *Nature* 555, 469–474. <https://doi.org/10.1038/nature26000>.
- Deng, M.Y., Sill, M., Sturm, D., Stichel, D., Witt, H., Ecker, J., Wittmann, A., Schittenhelm, J., Ebinger, M., Schuhmann, M.U., et al. (2020). Diffuse glioneuronal tumour with oligodendrogloma-like features and nuclear clusters (DGONC) – a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14. *Neuropathol. Appl. Neurobiol.* 46, 422–430. <https://doi.org/10.1111/nan.12590>.
- Sahm, F., Schrimpf, D., Stichel, D., Jones, D.T.W., Hielscher, T., Schefzyk, S., Okonechnikov, K., Koelsche, C., Reuss, D.E., Capper, D., et al. (2017). DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. *Lancet Oncol.* 18, 682–694. [https://doi.org/10.1016/S1470-2045\(17\)30155-9](https://doi.org/10.1016/S1470-2045(17)30155-9).
- Pajtler, K.W., Wen, J., Sill, M., Lin, T., Orisme, W., Tang, B., Hübner, J.-M., Ramaswamy, V., Jia, S., Dalton, J.D., et al. (2018). Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. *Acta Neuropathol.* 136, 211–226. <https://doi.org/10.1007/s00401-018-1877-0>.
- Cavalli, F.M.G., Hübner, J.-M., Sharma, T., Luu, B., Sill, M., Zapotocky, M., Mack, S.C., Witt, H., Lin, T., Shih, D.J.H., et al. (2018). Heterogeneity within the PF-EPN-B ependymoma subgroup. *Acta Neuropathol.* 136, 227–237. <https://doi.org/10.1007/s00401-018-1888-x>.
- Cavalli, F.M.G., Remke, M., Rampasek, L., Peacock, J., Shih, D.J.H., Luu, B., Garzia, L., Torchia, J., Nor, C., Morrissey, A.S., et al. (2017). Intertumoral Heterogeneity within Medulloblastoma Subgroups. *Cancer Cell* 31, 737–754.e6. <https://doi.org/10.1016/j.ccr.2017.05.005>.
- Sharma, T., Schwalbe, E.C., Williamson, D., Sill, M., Hovestadt, V., Mynarek, M., Rutkowski, S., Robinson, G.W., Gajjar, A., Cavalli, F., et al. (2019). Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. *Acta Neuropathol.* 138, 309–326. <https://doi.org/10.1007/s00401-019-02020-0>.
- Bogumil, H., Sill, M., Schrimpf, D., Ismer, B., Blume, C., Rahmazade, R., Hinz, F., Cherkezov, A., Banan, R., Friedel, D., et al. (2023). Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions. *Acta Neuropathol.* 145, 667–680. <https://doi.org/10.1007/s00401-023-02558-0>.
- Sievers, P., Sill, M., Blume, C., Tauziéde-Espriat, A., Schrimpf, D., Stichel, D., Reuss, D.E., Dogan, H., Hartmann, C., Mavrin, C., et al. (2021). Clear cell meningiomas are defined by a highly distinct DNA methylation profile and mutations in SMARCE1. *Acta Neuropathol.* 141, 281–290. <https://doi.org/10.1007/s00401-020-02247-2>.
- Zheng, T., Ghasemi, D.R., Okonechnikov, K., Korshunov, A., Sill, M., Maass, K.K., Benites Goncalves da Silva, P., Ryzhova, M., Gojo, J., Stichel, D., et al. (2021). Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. *Cancer Discov.* 11, 2230–2247. <https://doi.org/10.1158/2159-8290.CD-20-0963>.
- Ghasemi, D.R., Sill, M., Okonechnikov, K., Korshunov, A., Yip, S., Schutz, P.W., Scheie, D., Kruse, A., Harter, P.N., Kastelan, M., et al. (2019). MYCN amplification drives an aggressive form of spinal ependymoma. *Acta Neuropathol.* 138, 1075–1089. <https://doi.org/10.1007/s00401-019-02056-2>.
- Taylor, M.D., Northcott, P.A., Korshunov, A., Remke, M., Cho, Y.-J., Clifford, S.C., Eberhart, C.G., Parsons, D.W., Rutkowski, S., Gajjar, A., et al. (2012). Molecular subgroups of medulloblastoma: the current consensus. *Acta Neuropathol.* 123, 465–472. <https://doi.org/10.1007/s00401-011-0922-z>.
- Hovestadt, V., Remke, M., Kool, M., Pietsch, T., Northcott, P.A., Fischer, R., Cavalli, F.M.G., Ramaswamy, V., Zapatka, M., Reifenberger, G., et al. (2013). Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. *Acta Neuropathol.* 125, 913–916. <https://doi.org/10.1007/s00401-013-1126-5>.
- Deng, M.Y., Sill, M., Chiang, J., Schittenhelm, J., Ebinger, M., Schuhmann, M.U., Monoranu, C.-M., Milde, T., Wittmann, A., Hartmann, C., et al. (2018). Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. *Acta Neuropathol.* 136, 239–253. <https://doi.org/10.1007/s00401-018-1865-4>.
- Suwala, A.K., Felix, M., Friedel, D., Stichel, D., Schrimpf, D., Hinz, F., Hewer, E., Schweizer, L., Dohmen, H., Pohl, U., et al. (2022). Oligosarcomas, IDH-mutant are distinct and aggressive. *Acta Neuropathol.* 143, 263–281. <https://doi.org/10.1007/s00401-021-02395-z>.
- Suwala, A.K., Stichel, D., Schrimpf, D., Maas, S.L.N., Sill, M., Dohmen, H., Banan, R., Reinhardt, A., Sievers, P., Hinz, F., et al. (2021). Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1. *Acta Neuropathol.* 142, 179–189. <https://doi.org/10.1007/s00401-021-02302-6>.
- Chung, H.-J., Rajan, S., Wu, Z., Ferrone, C.K., Raffeld, M., Lee, I., Gagan, J., Dampier, C., Abdullaev, Z., Tyagi, M., et al. (2024). MYB/MYBL1-altered gliomas frequently harbor truncations and non-productive fusions in the MYB and MYBL1 genes. *Acta Neuropathol.* 148, 54. <https://doi.org/10.1007/s00401-024-02803-0>.
- Wevers, A.K., Stichel, D., Schrimpf, D., Coras, R., Pages, M., Tauziéde-Espriat, A., Varlet, P., Schwarz, D., Söylemezoglu, F., Pohl, U., et al. (2020). Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. *Acta Neuropathol.* 139, 193–209. <https://doi.org/10.1007/s00401-019-02078-w>.
- Johann, P.D., Hovestadt, V., Thomas, C., Jeibmann, A., Heß, K., Bens, S., Oyen, F., Hawkins, C., Pierson, C.R., Aldape, K., et al. (2017). Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1-deficient non-rhabdoid tumor with favorable long-term outcome. *Brain Pathol.* 27, 411–418. <https://doi.org/10.1111/bpa.12413>.
- Tauziéde-Espriat, A., Figarella-Branger, D., Métais, A., Uro-Coste, E., Maurage, C.-A., Lhermitte, B., Aline-Fardin, A., Hasty, L., Vasiljevic, A., Chiforeanu, D., et al. (2023). CNS neuroblastoma, FOXR2-activated and its mimics: a relevant panel approach for work-up and accurate diagnosis of this rare neoplasm. *Acta Neuropathol. Commun.* 11, 43. <https://doi.org/10.1186/s40478-023-01536-7>.
- Andreiuolo, F., Ferrone, C.K., Rajan, S., Perry, A., Guney, E., Cham, E., Giannini, C., Toland, A., Willard, N., de Souza, A.S., et al. (2024). Molecular and clinicopathologic characteristics of CNS embryonal tumors with BRD4::LEUTX fusion. *Acta Neuropathol. Commun.* 12, 42. <https://doi.org/10.1186/s40478-024-01746-7>.
- Keck, M.-K., Sill, M., Wittmann, A., Joshi, P., Stichel, D., Beck, P., Okonechnikov, K., Sievers, P., Wevers, A.K., Roncaroli, F., et al. (2023). Amplification of the PLAG-family genes-PLAGL1 and PLAGL2-is a key feature of the novel tumor type CNS embryonal tumor with PLAGL amplification. *Acta Neuropathol.* 145, 49–69. <https://doi.org/10.1007/s00401-022-02516-2>.
- Alhalabi, K.T., Stichel, D., Sievers, P., Peterziel, H., Sommerkamp, A.C., Sturm, D., Wittmann, A., Sill, M., Jäger, N., Beck, P., et al. (2021). PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum. *Acta Neuropathol.* 142, 841–857. <https://doi.org/10.1007/s00401-021-02354-8>.

29. Sturm, D., Orr, B.A., Toprak, U.H., Hovestadt, V., Jones, D.T.W., Capper, D., Sill, M., Buchhalter, I., Northcott, P.A., Leis, I., et al. (2016). New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. *Cell* 164, 1060–1072. <https://doi.org/10.1016/j.cell.2016.01.015>.

30. Tauziède-Espriat, A., Uro-Coste, E., Sievers, P., Nicaise, Y., Mariet, C., Siegfried, A., Pierron, G., Guillemot, D., Benzakoun, J., Pallud, J., et al. (2023). CNS tumor with EP300::BCOR fusion: discussing its prevalence in adult population. *Acta Neuropathol. Commun.* 11, 26. <https://doi.org/10.1186/s40478-023-01523-y>.

31. Clay, M.R., Patel, A., Tran, Q., Hedges, D.J., Chang, T.-C., Stewart, E., Charville, G., Cline, C., Dyer, M.A., and Orr, B.A. (2021). Methylation profiling reveals novel molecular classes of rhabdomyosarcoma. *Sci. Rep.* 11, 22213. <https://doi.org/10.1038/s41598-021-01649-w>.

32. Mahoney, S.E., Yao, Z., Keyes, C.C., Tapscott, S.J., and Diede, S.J. (2012). Genome-wide DNA methylation studies suggest distinct DNA methylation patterns in pediatric embryonal and alveolar rhabdomyosarcomas. *Epigenetics* 7, 400–408. <https://doi.org/10.4161/epi.19463>.

33. Terry, M., Wakeman, K., Williams, B.J., Miller, D.M., Sak, M., Abdullaev, Z., Pacheco, M.C., Aldape, K., and Lehman, N.L. (2022). Malignant melanotic nerve sheath tumor with PRKAR1A, KMT2C, and GNAQ mutations. *Free Neuropathol.* 3, 21. <https://doi.org/10.17879/freeneuropathology-2022-3864>.

34. Koelsche, C., Hovestadt, V., Jones, D.T.W., Capper, D., Sturm, D., Sahm, F., Schrimpf, D., Adeberg, S., Böhmer, K., Hagenlocher, C., et al. (2015). Melanotic tumors of the nervous system are characterized by distinct mutational, chromosomal and epigenomic profiles. *Brain Pathol.* 25, 202–208. <https://doi.org/10.1111/bpa.12228>.

35. Grit, J.L., Johnson, B.K., Dischinger, P.S., J Eissenburg, C., Adams, M., Campbell, S., Pollard, K., Pratilas, C.A., Triche, T.J., Graveel, C.R., and Steensma, M.R. (2021). Distinctive epigenomic alterations in NF1-deficient cutaneous and plexiform neurofibromas drive differential MKK/p38 signaling. *Epigenetics Chromatin* 14, 7. <https://doi.org/10.1186/s13072-020-00380-6>.

36. Koelsche, C., Schrimpf, D., Stichel, D., Sill, M., Sahm, F., Reuss, D.E., Blattner, M., Worst, B., Heilig, C.E., Beck, K., et al. (2021). Sarcoma classification by DNA methylation profiling. *Nat. Commun.* 12, 498. <https://doi.org/10.1038/s41467-020-20603-4>.

37. Fukushima, S., Yamashita, S., Kobayashi, H., Takami, H., Fukuoka, K., Nakamura, T., Yamasaki, K., Matsushita, Y., Nakamura, H., Totoki, Y., et al. (2017). Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas. *Acta Neuropathol.* 133, 445–462. <https://doi.org/10.1007/s00401-017-1673-2>.

38. Williams, L.A., Mills, L., Hooten, A.J., Langer, E., Roesler, M., Frazier, A.L., Kralio, M., Nelson, H.H., Bestrashniy, J., Amatruda, J.F., and Poynter, J.N. (2018). Differences in DNA methylation profiles by histologic subtype of paediatric germ cell tumours: a report from the Children's Oncology Group. *Br. J. Cancer* 119, 864–872. <https://doi.org/10.1038/s41416-018-0277-5>.

39. Kubota, Y., Seki, M., Kawai, T., Isobe, T., Yoshida, M., Sekiguchi, M., Kimura, S., Watanabe, K., Sato-Otsubo, A., Yoshida, K., et al. (2020). Comprehensive genetic analysis of pediatric germ cell tumors identifies potential drug targets. *Commun. Biol.* 3, 544. <https://doi.org/10.1038/s42003-020-01267-8>.

40. Dogan, S., Vasudevaraja, V., Xu, B., Serrano, J., Ptashkin, R.N., Jung, H.J., Chiang, S., Jungbluth, A.A., Cohen, M.A., Ganly, I., et al. (2019). DNA methylation-based classification of sinonasal undifferentiated carcinoma. *Mod. Pathol.* 32, 1447–1459. <https://doi.org/10.1038/s41379-019-0285-x>.

41. Pfaff, E., Aichmüller, C., Sill, M., Stichel, D., Snuderl, M., Karajannis, M.A., Schuhmann, M.U., Schittenhelm, J., Hasselblatt, M., Thomas, C., et al. (2020). Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. *Acta Neuropathol.* 139, 243–257. <https://doi.org/10.1007/s00401-019-02101-0>.

42. Henrich, K.-O., Bender, S., Saadati, M., Dreidax, D., Gartgruber, M., Shao, C., Herrmann, C., Wiesenfarth, M., Parzonka, M., Wehrmann, L., et al. (2016). Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas. *Cancer Res.* 76, 5523–5537. <https://doi.org/10.1158/0008-5472.CAN-15-2507>.

43. Maros, M.E., Capper, D., Jones, D.T.W., Hovestadt, V., von Deimling, A., Pfister, S.M., Benner, A., Zucknick, M., and Sill, M. (2020). Machine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data. *Nat. Protoc.* 15, 479–512. <https://doi.org/10.1038/s41596-019-0251-6>.

44. Van Calster, B., Collins, G.S., Vickers, A.J., Wynants, L., Kerr, K.F., Barreñada, L., Varoquaux, G., Singh, K., Moons, K.G.M., Hernandez-boussard, T., et al. (2024). Performance evaluation of predictive AI models to support medical decisions: Overview and guidance. Preprint at arXiv. <https://doi.org/10.48550/arXiv.2412.10288>.

45. Sturm, D., Capper, D., Andreuolo, F., Gessi, M., Köl sche, C., Reinhardt, A., Sievers, P., Wefers, A.K., Ebrahimi, A., Suwala, A.K., et al. (2023). Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology. *Nat. Med.* 29, 917–926. <https://doi.org/10.1038/s41591-023-02255-1>.

46. Maas, S.L.N., Stichel, D., Hielscher, T., Sievers, P., Berghoff, A.S., Schrimpf, D., Sill, M., Euskirchen, P., Blume, C., Patel, A., et al. (2021). Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. *J. Clin. Oncol.* 39, 3839–3852. <https://doi.org/10.1200/JCO.21.00784>.

47. Hielscher, T., Sill, M., Sievers, P., Stichel, D., Brandner, S., Jones, D.T.W., von Deimling, A., Sahm, F., and Maas, S.L.N. (2023). Clinical implementation of integrated molecular-morphologic risk prediction for meningioma. *Brain Pathol.* 33, e13132. <https://doi.org/10.1111/bpa.13132>.

48. Mynarek, M., Obrecht, D., Sill, M., Sturm, D., Kloth-Stachnau, K., Selt, F., Ecker, J., von Hoff, K., Juhnke, B.-O., Goschzik, T., et al. (2023). Identification of low and very high-risk patients with non-WNT/non-SHH medulloblastoma by improved clinico-molecular stratification of the HIT2000 and I-HIT-MED cohorts. *Acta Neuropathol.* 145, 97–112. <https://doi.org/10.1007/s00401-022-02522-4>.

49. Aldape, K., Capper, D., von Deimling, A., Giannini, C., Gilbert, M.R., Hawkins, C., Hench, J., Jacques, T.S., Jones, D., Louis, D.N., et al. (2025). cIMPACT-NOW Update 9: Recommendations on Utilization of Genome-Wide DNA Methylation Profiling for Central Nervous System Tumor Diagnostics. *Neurooncol. Adv.* 7, vdae228. <https://doi.org/10.1093/noajnl/vdae228>.

50. White, C.L., Kinross, K.M., Moore, M.K., Rasouli, E., Strong, R., Jones, J.M., Cain, J.E., Sturm, D., Sahm, F., Jones, D.T.W., et al. (2023). Implementation of DNA Methylation Array Profiling in Pediatric Central Nervous System Tumors: The AIM BRAIN Project: An Australian and New Zealand Children's Haematology/Oncology Group Study. *J. Mol. Diagn.* 25, 709–728. <https://doi.org/10.1016/j.jmoldx.2023.06.013>.

51. Wu, Z., Abdullaev, Z., Pratt, D., Chung, H.-J., Skarshaug, S., Zgonc, V., Perry, C., Pack, S., Saidkhodjaeva, L., Nagaraj, S., et al. (2022). Impact of the methylation classifier and ancillary methods on CNS tumor diagnostics. *Neuro Oncol.* 24, 571–581. <https://doi.org/10.1093/neuonc/noab227>.

52. Jaunmuktane, Z., Capper, D., Jones, D.T.W., Schrimpf, D., Sill, M., Dutt, M., Suraweera, N., Pfister, S.M., von Deimling, A., and Brandner, S. (2019). Methylation array profiling of adult brain tumors: diagnostic outcomes in a large, single centre. *Acta Neuropathol. Commun.* 7, 24. <https://doi.org/10.1186/s40478-019-0668-8>.

53. Patel, A., Göbel, K., Ille, S., Hinz, F., Schoebe, N., Bogumil, H., Meyer, J., Brehm, M., Kardo, H., Schrimpf, D., et al. (2025). Prospective, multicenter validation of a platform for rapid molecular profiling of central nervous system tumors. *Nat. Med.* 31, 1567. <https://doi.org/10.1038/s41591-025-03562-5>.

54. Brändl, B., Steiger, M., Kubelt, C., Rohrhardt, C., Zhu, Z., Evers, M., Wang, G., Schuldt, B., Afflerbach, A.-K., Wong, D., et al. (2025). Rapid brain tumor

classification from sparse epigenomic data. *Nat. Med.* 31, 840–848. <https://doi.org/10.1038/s41591-024-03435-3>.

55. Vermeulen, C., Pagès-Gallego, M., Kester, L., Kranendonk, M.E.G., Wesseling, P., Verburg, N., de Witt Hamer, P., Kooi, E.J., Dankmeijer, L., van der Lugt, J., et al. (2023). Ultra-fast deep-learned CNS tumour classification during surgery. *Nature* 622, 842–849. <https://doi.org/10.1038/s41586-023-06615-2>.

56. Jäger, N., Reuss, D.E., Sill, M., Schrimpf, D., Suwala, A.K., Sievers, P., Banan, R., Hinz, F., Rahmazade, R., Bogumil, H., et al. (2025). Advancing sarcoma diagnostics with expanded DNA methylation-based classification. Preprint at medRxiv. <https://doi.org/10.1101/2025.06.30.25330543>.

57. Salgado, C.M., Alaggio, R., Ciolfi, A., Zin, A., Diomedi Camassei, F., Pedace, L., Milano, G.M., Serra, A., Di Giannatale, A., Mastronuzzi, A., et al. (2023). Pediatric BCOR-Altered Tumors From Soft Tissue/Kidney

Display Specific DNA Methylation Profiles. *Mod. Pathol.* 36, 100039. <https://doi.org/10.1016/j.modpat.2022.100039>.

58. Aryee, M.J., Jaffe, A.E., Corradia-Bravo, H., Ladd-Acosta, C., Feinberg, A.P., Hansen, K.D., and Irizarry, R.A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. *Bioinformatics* 30, 1363–1369. <https://doi.org/10.1093/bioinformatics/btu049>.

59. Breiman, L. (1996). Stacked regressions. *Mach. Learn.* 24, 49–64. <https://doi.org/10.1007/BF00117832>.

60. Stichel, D., Schrimpf, D., Casalini, B., Meyer, J., Wefers, A.K., Sievers, P., Korshunov, A., Koelsche, C., Reuss, D.E., Reinhardt, A., et al. (2019). Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. *Acta Neuropathol.* 138, 827–835. <https://doi.org/10.1007/s00401-019-02039-3>.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Critical commercial assays		
Illumina Infinium HumanMethylation450 (450k) BeadChip Kit	Illumina	Cat# WG-314-1003
Illumina Infinium MethylationEPIC (EPIC) BeadChip Kit	Illumina	Cat# WG-317-1003
Illumina Infinium MethylationEPIC v2.0 (EPICv2) BeadChip Kit	Illumina	Cat# 20020459
Deposited data		
v12.8 CNS Tumor Reference Dataset (raw IDAT files and metadata)	GHGA	GHGA: GHGAS89861553411214; https://data.ghga.de/browse?q=GHGAS89861553411214
Software and algorithms		
MNP Classifier Training Code	this paper	https://github.com/mwsill/mnp_training
R	The R Project for Statistical Computing	v4.3.3; https://www.r-project.org/
minfi R package	Aryee et al. ⁵⁴	v1.21.4; Bioconductor: https://bioconductor.org/packages/minfi ; RRID: SCR_012830
limma R package	Bioconductor	v3.30.11; https://bioconductor.org/packages/limma ; RRID: SCR_010943
uwot R package	CRAN	v0.2.3; https://cran.r-project.org/package=uwot
randomForest R package	CRAN	v4.7-1.2; https://cran.r-project.org/package=randomForest ; RRID: SCR_015718
glmnet R package	CRAN	v4.1-8; https://cran.r-project.org/package=glmnet ; RRID: SCR_015505
mltest R package	CRAN	v1.0.1; https://cran.r-project.org/package=mltest
rms R package	CRAN	v6.8-2; https://cran.r-project.org/package=rms ; RRID: SCR_023242
pROC R package	CRAN	v1.18.5; https://cran.r-project.org/package=pROC ; RRID: SCR_24286

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study utilized a large international cohort of human central nervous system (CNS) tumor samples for the development and validation of a DNA methylation-based classifier. All procedures involving human participants were conducted in accordance with the Declaration of Helsinki and relevant institutional and national guidelines. Written informed consent was obtained from all patients or their legal guardians. The study protocol was reviewed and approved by the Ethics Committee of the Medical Faculty Heidelberg (reference S-318/2022, approval date 09.05.2022). Sample collection and molecular analyses were additionally approved by the respective local institutional review boards or ethics committees at each participating center.

METHOD DETAILS

DNA-methylation array processing

The Illumina Infinium HumanMethylation450 (450k) array, Illumina Infinium MethylationEPIC (EPIC) array and Illumina Infinium MethylationEPICv2 (EPICv2) were used to obtain genome-wide DNA methylation data for tumor samples and normal control tissues according to the manufacturer's instructions (Illumina, San Diego, USA). Data not gathered through molecularneuropathology.org, were generated at the Genomics and Proteomics Core Facility of the German Cancer Research Center (DKFZ, Heidelberg, Germany) and processed accordingly on an iScan device (Illumina). DNA methylation data were generated from fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue samples. Input DNA quantity for most fresh-frozen samples was >500 ng, while 250 ng was used for most FFPE tissues. FFPE-derived DNA was processed using the Infinium FFPE DNA restoration kit. All samples underwent strict on-chip quality control. Inclusion in the mnp_v12.8 reference dataset required samples to meet two criteria: (1) a median log2 signal >8 for both the methylated and unmethylated channels, and (2) ≥ 90% of probes achieving a detection P-value <0.05.

All computational analyses were performed in R version 4.3.3 (R Development Core Team, 2024). Raw signal intensities were obtained from IDAT files using the minfi Bioconductor package version 1.21.4.⁵⁸ Illumina EPIC, EPICv2 and 450k samples were merged

into a combined dataset by selecting the intersection of probes present on both arrays. Each sample was individually normalized by performing a background correction (shifting the 5th percentile of negative control probe intensities to 0) and a dye-bias correction (scaling of the mean of normalization control probe intensities to 10,000) for both color channels. Subsequently, a correction for the type of material (FFPE/frozen) and array type (450k/EPIC(v2)) was performed by fitting univariable linear models to the log2-transformed intensity values (removeBatchEffect function in the limma package version 3.30.11). The methylated and unmethylated signals were corrected individually. Beta-values were calculated from the retransformed intensities using an offset of 100 (as recommended by Illumina).

CNV analysis

CNV analysis was performed as described previously⁶ (R-package conumee v1.42.0 and conumee2 v2.1 for EPICv2 arrays).

MGMT status prediction

The methylation status of the MGMT (Methylated-DNA–protein-cysteine methyltransferase) promoter was inferred as previously described⁶ (R-package mgmtstp27 v0.7).

Non-linear dimension reduction

To perform unsupervised non-linear dimensionality reduction, the 10,000 CpG probes with the highest standard deviation were selected, and a UMAP projection was calculated using the umap() function available in the R-package uwot v0.2.3.

Classifier training

Classifier training was performed as described in Capper et al.⁶ and Maros et al.⁴³ First, we applied a permutation-based variable importance measure (R-package randomForest v4.7-1.2) to select the 10,000 most informative CpG probes as features for the final Random Forest (RF). Unbalanced class sample sizes were taken into account by down sampling each bootstrap sample to the minority class. Next, a ridge-penalized multinomial logistic-regression model (R-package glmnet v4.1-8) was fitted to calibrate the RF output, mapping raw prediction scores to probability estimates. An optimal penalization parameter was chosen by a 10-fold cross-validation. Combining classifier outputs with a logistic regression model is an ensemble strategy known as stacking.⁵⁹

Classifier validation

To evaluate the classifier, a 5-fold nested cross-validation scheme generated out-of-sample RF scores that enabled us to fit and validate the calibration models in each fold. To measure the performance of the classifier the following metrics and figures were generated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mltest v1.0.1), Confusion Matrix, multiclass Log Loss, multiclass Brier Score, Calibration Plots (R-package rms v6.8-2). In addition, receiver operating characteristics (ROC) curves and accompanying areas under the curve (AUC) are generated using R-package pROC v1.18.5.

RNA sequencing and fusion calling

RNA sequencing for the purpose of gene fusion calling was performed on a NextSeq 500 or NovaSeq 6000 instrument (Illumina) at the Department of Neuropathology Heidelberg as previously described.⁶⁰

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational analyses were performed in R version 4.3.3. To measure the performance of the classifier, the following metrics were generated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mltest), Confusion Matrix, multiclass Log Loss, multiclass Brier Score, and Calibration Plots (R-package rms). Receiver operating characteristics (ROC) curves and accompanying areas under the curve (AUC) were generated using R-package pROC. Survival analyses in [Figures 5](#) and [S5](#) were visualized using Kaplan-Meier estimates for descriptive purposes. The number of patients (n) for each subgroup is provided in the corresponding figure legend.