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SUMMARY

DNA methylation-based classification is now central to contemporary neuro-oncology, as highlighted by the 
World Health Organization (WHO) classification of central nervous system (CNS) tumors. We present the Hei-

delberg CNS Tumor Methylation Classifier version 12.8 (v12.8), trained on 7,495 methylation profiles, which ex-

pands recognized entities from 91 classes in version 11 (v11) to 184 subclasses. This expansion is a result of 
newly identified tumor types discovered through our large online repository and global collaborations, under-

scoring CNS tumor heterogeneity. The random forest-based classifier achieves 95% subclass-level accuracy, 
with its well-calibrated probabilistic scores providing a reliable measure of confidence for each classification. 
Its hierarchical output structure enables interpretation across subclass, class, family, and superfamily levels, 
thereby supporting clinical decisions at multiple granularities. Comparative analyses demonstrate that v12.8 
surpasses previous versions and conventional WHO-based approaches. These advances highlight the 
improved precision and practical utility of the updated classifier in personalized neuro-oncology.

INTRODUCTION

DNA methylation-based classification has become a central 

pillar of state-of-the-art diagnostics in neuro-oncology. Most 

prominently, the fifth edition of the World Health Organization

(WHO) classification of central nervous system (CNS) tumors 1 

lists DNA methylation profiling as a desirable or even essential 

method for accurately diagnosing several tumor types. In addi-

tion, methylation profiling is now recommended by multiple 

guideline authorities and medical societies, such as the National
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Ulrich Schü ller, 63 Jens Schittenhelm, 64 Martin U. Schuhmann, 65 Marco Stein, 66 Petra Ketteler, 43,67 Marc Ladanyi, 17

(Author list continued on next page)

17 Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
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Comprehensive Cancer Network (NCCN), 2 European Associa-

tion of Neuro-Oncology (EANO), 3 International Collaboration on 

Cancer Reporting (ICCR) 4 or Royal College of Pathologists 

(RCPath UK). 5

DNA methylation encodes a unique combination of informa-

tion—the heritable marks of cell-of-origin and changes incurred 

during tumor initiation and progression. This makes it a stable 

and reliable resource for tumor typing. Here, we present the 

diverse landscape of CNS tumors represented by the Heidelberg 

methylation classifier v12.8 and its utility in clinical routine diag-

nostics. DNA methylation-based classification of CNS tumors 

was pioneered with the public release of the Heidelberg CNS tu-

mor classifier v11, which was trained on a reference set of 2,801 

samples comprising 91 classes primarily based on the existing 

WHO tumor types. 6 The classifier, and all subsequent updates, 

were made available to the scientific community for the past 9 

years (2016–2025) on the molecularneuropathology.org plat-

form. At the time of data freeze in October 2024, over 160,000 

profiles worldwide were analyzed on the platform. In addition 

to analyses and database management for the community, the 

platform included an end user license agreement (EULA) that 

offered users to share data for further development. This facili-

tated the accumulation of diverse DNA methylation profiles 

from across the globe. As the data repository expanded, a 

considerable number of uploaded samples failed to align with 

any of the 91 classes in v11, thus prompting exploratory analyses 

that led to identification of previously undefined or misclassified

tumor types. We mainly employed unsupervised approaches to 

identify novel clusters using methylation data with further valida-

tion relying on ancillary methods like DNA/RNA sequencing, 

immunohistochemistry, etc. Taken together, these findings laid 

the groundwork for creating an updated reference set for 

v12.8. Multiple novel methylation-defined or -supported entities 

from v12.8 are now recognized by the WHO 2021 guidelines, 

such as the diffuse glioneuronal tumor with oligodendroglioma-

like features and nuclear clusters (DGONC). 7 The classifier has 

been utilized and validated in independent cohorts across 

diverse regions and setups, demonstrating its universal robust-

ness and potential clinical utility.

The value of methylation classification primarily lies in over-

coming the limitations of classical histology-dependent 

methods. Owing to its robust nature, it overcomes potential in-

ter-observer variability in reporting and the hypothesis-driven 

nature of targeted testing. Furthermore, methylation profiling us-

ing methylation arrays offers prognostic information like copy-

number data and MGMT promoter methylation status in addition 

to methylation classification in a single assay.

RESULTS

v12.8 reference set expands classification to 184 

hierarchical subclasses

Building upon the reference set of the previously published Hei-

delberg methylation classifier v11 comprising 2,801 samples
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and our large database of over 160,000 samples (Figure 1), we 

expanded the reference set for v12.8 to 7,495 CNS methylation 

profiles (Figures 2 and S1). Of these, approximately 19% derive 

from the previous v11 cohort, preserving continuity and consis-

tency with established diagnostic categories. An additional 11% 

originate from user submissions via our publicly accessible web 

platform. While these represent a relatively small proportion of 

the final training dataset, the diversity of the uploaded samples 

played a valuable supporting role in identifying new tumor en-

tities. The remaining samples were either diagnostic cases 

added to increase the sample size of previously underrepre-

sented classes or sourced from institutional collaborations, 

particularly those focusing on well-characterized entities such 

as meningiomas, 8 posterior fossa (PF) A and PFB ependymo-

mas, 9,10 and medulloblastomas. 11,12

To leverage the growing volume of methylation profiles, we 

regularly performed non-linear dimensionality reduction ana-

lyses—specifically, t-distributed stochastic neighbor embed-

ding (t-SNE) and uniform manifold approximation and projection 

(UMAP) (Figure 3A). These methods enabled unsupervised 

exploratory data analysis, revealing new, distinct clusters consti-

tuting samples that were previously unclassifiable under the 

original (v11) framework (Figures 3B, 3C, and S2). Visual inspec-

tion of t-SNE and UMAP plots, in combination with molecular 

characterization and clinical data of samples helped differentiate 

relevant emerging tumor clusters from known entities, prompting 

identification of novel subclasses and refinement of existing 

ones. In addition, methylation profiling using methylation arrays 

yields genome-wide copy-number variation (CNV) data and 

MGMT (methylated-DNA-protein-cysteine methyltransferase)

promoter methylation status independently of methylation clas-

sification from the same assay. This unified assay is highly effi-

cient and conserves precious tissue in addition to being essential 

for contemporary CNS tumor diagnostics. Copy number data 

robustly identifies pathognomonic and prognostic alterations in 

multiple entities particularly diffuse gliomas and meningiomas. 

This information is indispensable for characterizing emerging en-

tities from unsupervised clustering of methylation data. For 

example, the newly described glioneuronal tumor with ATRX 

alteration (GTAKA) subclass is known to harbor homozygous 

CDKN2A/B deletions in ∼50% of cases, ATRX alterations and 

importantly recurrent targetable NTRK fusions (Figure S3A). 13 

In the same way, the novel entity DGONC was found to harbor 

a characteristic monosomy of chromosome 14 or homozygous 

CDKN2A/B deletion (Figure S3B). 7 Thus, methylation-based 

classification can directly guide the search for actionable thera-

peutic alterations. Similarly, the CNV profile can provide strong 

evidence for other targetable alterations, such as the character-

istic tandem duplication at the BRAF locus indicative of a 

KIAA1549:BRAF fusion, which can be confirmed by transcript-

level analysis (Figure S4). This multi-faceted approach, 

combining unsupervised clustering with detailed CNV and clin-

ical and molecular analysis, allowed us to systematically incor-

porate these new entities, effectively doubling the total number 

of subclasses to 184, with the newly added entities detailed in 

Table 1.

Alongside the expansion of tumor classes, we introduced a 

four-tier hierarchical structure (Figures 2 and S1; Table S1) de-

signed to reflect the complex biological relationships between 

tumor entities. While subclasses denote the highest granularity,

A B

C

Figure 1. Overview of the molecularneuropathology.org platform and its utilization

(A) Global distribution of sample uploads to molecularneuropathology.org from October 2016 to February 2025.

(B) UMAP projection of 97,213 CNS tumor samples, dots are colored by the v11 classifier confidence score levels for each sample, as indicated in the legend. The 

x and y axes represent the first and second dimensions of the non-linear UMAP projection, respectively.

(C) Flow diagram illustrating the Machine Learning Operations (MLOps) life cycle used for model training, validation, deployment, and maintenance for the MNP 

classifier.
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established diagnostic categories, supported by robust clinical, 

histological, and molecular evidence, generally reside at the 

‘‘family’’ or ‘‘class’’ level. Newly recognized entities, often 

defined by subtle epigenetic variations and with clinical rele-

vance that may still be unresolved, are usually assigned to the 

subclass level. Moreover, superfamilies commonly correspond 

to the broad WHO categories. As a conservative approach, the 

classifier defaults to higher-tier assignments if subclass bound-

aries are not clearly defined. This hierarchical system is meant to 

provide a framework that mirrors the clinical and biological 

complexity of CNS tumors. Furthermore, we formulated evi-

dence levels as annotations for each entity. These annotations, 

together with relevant publications, are listed in Table S1 and 

provide guidance on the available information about the entities 

and their alignment with the current WHO classification 

(Figures 2 and S1). Level a refers to tumor entities identical to 

the WHO 2021. Level b refers to entities defined by large single 

or more than one smaller dataset published describing the 

type/subtype as molecularly and/or clinically distinct, or the 

methylation class represents a distinct fraction of an established 

WHO 2021 tumor class. Level c refers to entities described by a 

single small dataset or case series. Level d refers to entities that 

are solely based on clustering signals in a t-SNE or UMAP. The 

annotation is typically provided at the most granular layer, and 

in addition at a higher layer if the latter matches a WHO type or 

subtype. The definitions, hierarchical levels and annotations

were curated and reviewed by an international group of 

neuropathologists.

v12.8 classifier achieves 95% cross-validated accuracy 

while providing well-calibrated, probabilistic

confidence scores

To train the classification model, we followed the random forest-

based approach described previously. 6,43 We evaluated the per-

formance of the classifier using a 5-fold nested cross-validation 

scheme. All subclasses achieved a balanced accuracy greater 

than 0.75, with 175 out of 184 subclasses exceeding 0.9 in 

balanced accuracy (Figure 4A).

The classifier provides probabilistic confidence scores for 

each prediction. Our new hierarchical system leverages these 

scores by summing the probabilities of mutually exclusive sub-

classes to calculate parent-category probabilities. This 

approach provides more robust diagnostic guidance at higher 

tiers of the hierarchy. As observed with the v11 classifier, most 

‘‘errors’’ occur between closely related subclasses or classes, 

such as among different subclasses (*) of posterior fossa group 

A (EPN_PFA_*) ependymomas (Figure 4B), between subclasses 

of group 3 and 4 medulloblastomas (MB_G34_*), or among 

benign meningioma subclasses (MNG_BEN_*). While some of 

these newly delineated subclasses indeed correlate with 

different prognostic outcomes, as described in their respective 

publications, most subclasses currently lack direct clinical
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Figure 2. Training dataset for v12.8

(A) UMAP projection of 7,495 samples used for training the v12.8 classifier. The x and y axes represent the first and second dimensions of the non-linear UMAP 

projection, respectively.

(B) Legend indicating color code for subclasses shown in (A). Letters in rounded brackets before abbreviation of the subclass indicate ‘‘evidence level’’ for the 

respective subclass. Each broad category shown in bold in the legend is a superfamily, families are indicated using a solid bracket on the second level adjacent to 

the colored blocks, classes are indicated using a dotted-line bracket at the first level. Due to the large number of subclasses, only six superfamilies are highlighted 

here. The remaining superfamilies and their corresponding families, classes, and subclasses are shown in Figure S1.

See also Figure S1; Table S1.
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implications, making aggregated probability scores at higher hi-

erarchical levels sufficient for guiding diagnostic decisions ac-

cording to current knowledge.

Overall, the classifier achieved a 95% subclass-level accuracy 

and a Brier score of 0.028. In multiclass classification, the Brier 

score measures the mean squared difference between predicted 

probabilities (i.e., calibrated classifier scores) and observed 

class frequencies, indicating that the probability estimates are 

exceptionally well-calibrated and outperform those of the orig-

inal v11 classifier (Figures 4C–4E).

The 0.9 confidence threshold provides a reliable cutoff 

for clinical use

Similar to the previous v11 classifier, we recommend a threshold 

of 0.9 across all tumor entities at the family level in v12.8. This

threshold was selected because it showed good overall perfor-

mance in our cross-validation across all subclasses in both the 

v11 and v12.8 training datasets, and because it is straightfor-

ward to communicate in clinical practice. In addition, we per-

formed one-vs-all receiver operating characteristics (ROC) ana-

lyses for each subclass against all others and selected the 

threshold that maximizes Youden’s index, thus optimally 

balancing sensitivity and specificity (Figure 4D; Table S1). The 

highest Youden-based threshold was 0.77, indicating that a 

0.9 cutoff is somewhat conservative for most subclasses. Never-

theless, applying a 0.9 threshold helps maintain high sensitivity 

for certain subclasses. Ultimately, the well-calibrated probability 

scores provided by our classifier allow users to make informed 

decision-making in the context of other available complementary 

clinical, histological, and molecular data. 44
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Figure 3. UMAP projection comparing classification performance of mnp_v11b6 and mnp_v12.8

(A) Methylation profiles of 97,213 CNS tumor samples, including the v12.8 training data, classified using the v12.8 classifier, where all samples achieve a 

classification score of ≥0.7 and are colored according to the v12.8 color scheme for the subclass. The labels are the abbreviation for the family level. The x and y 

axes represent the first and second dimensions of the non-linear UMAP projection, respectively.

(B) Sankey plot showing scores for predictions with the v11 classifier and hierarchical levels of the v12.8 classifier respectively for the samples illustrated in (A).

(C) Bar-plot indicates log10-scaled number of v12 subclass predictions for samples not classifiable using v11.

See also Figure S2.
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v12.8 outperforms v11 and resolves previously 

unclassifiable tumors

Among the samples in our methylation database, 97,213 

achieved a v12.8 classifier score of ≥0.7 at the subclass level 

(Figure 3A). When applying the v11 classifier to this cohort, 

only 79,749 samples (82%) could be classified with a confidence 

score of ≥0.7 (Figures 3B and 3C). These previously unclassifi-

able cases were successfully classified into newly identified sub-

classes as well as some existing classes, thus benefiting from 

the increased training data and refined classification scheme in 

v12.8. Of the samples in the latter category (v11 score <0.7), 

2,128 (12%) were classified as glioblastoma, IDH-wild type, 

mesenchymal type, 1,422 (8%) as glioblastoma, IDH-wild type,

RTK1/RTK2, and 587 (3%) as IDH-mutant astrocytoma with 

scores ≥0.7, thus underscoring the higher confidence of the 

v12.8 classifier in previously established entities. Overall, we 

demonstrate the improved performance of v12.8, which accom-

modates newly discovered tumor types and provides more 

robust classification for previously recognized entities.

The number of newly identified classes has steadily increased 

over the past years, now reaching a plateau state. To further 

explore the dynamics of rare subclass discovery, we performed 

an analysis of 14 subclasses with ≤50 cases each in the full 

cohort of 97,213 CNS tumors (Figure S2). The model projects 

that, given a throughput of 1,236 cases per month, it would 

take on average 2.9 years to identify 10 new cases of a typical

Table 1. Overview of newly added or expanded tumor classes in the v12.8 classifier

Broad Tumor Category Tumor Class/Subclass and Key Features Reference(s)

Meningiomas Subclasses of Meningioma Sahm et al. 8 

Clear cell meningioma (SMARCE1-mutant) Sievers et al. 14

Ependymomas Ependymoma, subtypes PFA and PFB Pajtler et al. 9 ; Cavalli et al. 10 

Ependymoma, ZFTA-fused Zheng et al. 15

Spinal ependymoma, MYCN-amplified Ghasemi et al. 16

Medulloblastomas Wingless class (WNT), subtypes of

Sonic Hedgehog (SHH) medulloblastomas 

and consensus subtypes of 

non-WNT/non-SHH medulloblastomas.

Cavalli et al. 11 ; Sharma et al. 12 ; 

Taylor et al. 17 ; Hovestadt et al. 18

Gliomas & 

Glioneuronal Tumors

Diffuse leptomeningeal glioneuronal

tumors (DLGNT)

Deng et al. 19

Diffuse glioneuronal tumor with

nuclear clusters (DGONC)

Deng et al. 7

IDH-mutant oligosarcomas Suwala et al. 20

Glioblastomas with primitive neuronal component Suwala et al. 21

Glioneuronal tumor with ATRX

alteration (GTAKA)

Bogumil et al. 13

Gliomas with MYB/MYBL1 alteration Chung et al. 22 ; Wefers et al. 23

Embryonal & 

Neuroepithelial Tumors

Cribriform neuroepithelial tumors 

(SMARCB1-deficient)

Johann et al. 24

CNS neuroblastoma, FOXR2-activated Tauziè de-Espariat et al. 25 

Embryonal tumors with BRD4::LEUTX fusion Andreiuolo et al. 26

Embryonal tumors with PLAG-family amplification Keck et al. 27

Neuroepithelial tumors with PATZ1-fusions Alhalabi et al. 28

CNS Tumor with BCOR Internal Tandem Duplication Sturm et al. 29

CNS tumors with EP300::BCOR fusion Tauziè de-Espariat et al. 30 

Intraocular medulloepithelioma Zheng et al. 15

Retinal Tumors Retinoblastoma, MYCN-activated Ghasemi et al. 16

Sarcomas & 

Mesenchymal Tumors

Rhabdomyosarcoma subtypes Clay et al. 31 ; Mahoney et al. 32

Malignant melanotic nerve sheath tumors Terry et al. 33 ; Koelsche et al. 34 

Plexiform neurofibromas Grit et al. 35

Langerhans cell histiocytosis Koelsche et al. 36

Other CNS & 

Related Tumors

Germ cell tumors Fukushima et al. 37 ; Williams et al. 38 ; Kubota et al. 39 

Sinonasal undifferentiated carcinoma, IDH2-mutant Dogan et al. 40

Pineal parenchymal tumors of

intermediate differentiation

Pfaff et al. 41

Neuroblastomas (subtypes) Henrich et al. 42

See also Figures S3 and S4.
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rare subclass. In light of nearly a decade of continuous data 

collection, we posit that the likelihood that entirely new and 

clearly distinct entities remain undiscovered is therefore low, 

although this cannot be excluded.

v12.8 subclasses show prognostic relevance in 

independent cohorts

To show the clinical potential of the v12.8 classifier, we analyzed 

data from the prospective, population-based Molecular Neuro-

pathology 2.0 (MNP 2.0) study, 45 conducted within the German

pediatric neuro-oncology ‘‘Treatment Network HIT’’, which 

featured blinded central neuropathological review alongside mo-

lecular testing. In this cohort of over 1,200 newly diagnosed pe-

diatric CNS tumor patients, the combined application of DNA 

methylation profiling and targeted panel sequencing improved 

the accuracy of tumor classification and identified cases where 

molecular data clarified ambiguous histology. Kaplan-Meier 

analysis of 80 ependymoma cases and 171 medulloblastoma 

cases, grouped by their v12.8 methylation subclass, revealed 

distinct survival curves for each subclass (Figures 5A and 5B),
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Figure 4. 5-fold nested cross-validation performance of the v12.8 classifier

(A) Bar plot showing the balanced accuracy for each of the 184 subclasses, as derived from 5-fold nested cross-validation.

(B) Confusion matrix focusing on the ependymoma superfamily, where the majority of misclassifications occur between subclasses that belong to the same class 

or family (indicated by green and blue rectangles, respectively).

(C) Calibration plot comparing predicted probabilities with observed outcomes, illustrating the degree of score calibration across subclasses.

(D) Scatterplot of subclass-specific Youden-optimal thresholds with color-coded tumor classes and a red dashed line at 0.9 marking the recommended 

threshold.

(E) Table summarizing overall performance metrics: accuracy, F1-score, log loss, and Brier score, evaluated at each hierarchical level (subclass, class, family, 

superfamily).

See also Table S1.
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highlighting meaningful prognostic differences. One important 

finding of the MNP2.0 study was that a subset of tumors origi-

nally diagnosed as high-grade gliomas (HGG) by conventional 

histopathology were classified as low-grade gliomas (LGG) 

when methylation results were taken into account; these patients 

showed more favorable outcomes during a median follow-up of 

2.5 years, indicating that methylation-based classification could 

guide less intensive therapy. In line with this finding, Figure 5C 

shows a Sankey plot of 96 cases initially reported as ‘‘HGG’’. 

Of these, 22% were assigned to a lower grade tumor subclass 

with a score of at least 0.9 by the v12.8 classifier.

In another large study of meningiomas, the DNA-methylation 

family assignment was combined with WHO histological grading 

and chromosomal CNV data to develop an integrated molecular-

morphologic score for risk stratification that significantly outper-

formed WHO grading alone. 46,47 To illustrate this potential of 

v12.8 methylation subclasses for risk stratification of meningi-

omas, Figure 5D shows the distinct Kaplan-Meier curves of pre-

dicted methylation subclasses for 958 meningioma patients 

included in this cohort. To further illustrate the clinical relevance 

of subclass annotations, we provide additional survival analyses 

in Figure S5. These include overall survival of patients from the 

HIT-2000 trial stratified by non-WNT/non-SHH medulloblastoma 

subclasses 48 and event-free survival of patients from the MNP2 

study assigned to a specific subclass of the ‘‘low-grade glial/ 

glioneuronal/neuroepithelial tumor’’ superfamily.

Overall, these three studies exemplify that DNA methylation-

based profiling allows for more accurate classification and can 

be used for improved risk stratification of patients.

DISCUSSION

Identification of emerging clusters, designation as subclasses 

and classes, and their subsequent implementation into diag-

nostic guidelines is inherently an iterative process. The recent 

work of the cIMPACT-NOW consortium, 49 endorsed by the
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Figure 5. Prognostic performance of the v12.8 classifier compared to alternative explanatory variables in Cox proportional hazards models

(A) Kaplan-Meier estimates of overall survival for ependymoma patients from the MNP2.0 cohort stratified by v12.8 methylation subclass. The x axis represents 

time in months, and the y axis represents the survival probability.

(B) Kaplan-Meier estimates of overall survival for medulloblastoma patients from the MNP2.0 cohort stratified by v12.8 methylation subclass. The x axis rep-

resents time in months, and the y axis represents the survival probability.

(C) Sankey plot showing methylation subclass predictions (score >0.9) for histologically assigned high-grade gliomas in the MNP2.0 cohort. Subclasses outlined 

in blue indicate low grade tumors.

(D) Kaplan-Meier estimates of progression-free survival from the meningioma cohort 46 stratified by v12.8 methylation subclass. The x axis represents time in 

months, and the y axis represents the survival probability. Color of curves indicates v12.8 subclass.

See also Figure S5.
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International Society of Neuropathology, offers a framework for 

systematically evaluating emerging signals that suggest putative 

new tumor entities. Their guidelines recommend gathering 

comprehensive molecular, histopathological, and clinical out-

come data before classifying any newly identified epigenetic 

cluster as a distinct diagnostic entity. The expanded Heidelberg 

Methylation Classifier (v12.8) described here embodies this iter-

ative approach, wherein novel putative entities emerging from 

exploratory t-SNE and UMAP clustering undergo continuous 

scrutiny and validation by the international neuro-oncology 

community.

Although conceived primarily as a research tool, the Heidel-

berg Methylation Classifier has demonstrated profound diag-

nostic potential over time as reflected by its inclusion in multiple 

international neuro-oncology guidelines. The classifier pos-

sesses a distinct advantage owing to its scale and the compre-

hensive, meticulously curated reference data. While hypothe-

sis-driven methods are inherently restrictive, our large data 

repository combined with an unsupervised approach enabled 

the precise classification of established tumor entities and the 

identification of previously uncharacterized, ultra-rare entities 

that would not be feasible with smaller cohorts.

The v12.8 expansion comes with a clear hierarchical structure 

and evidence level annotation, reflecting definitions and rele-

vance of granular entities but also emphasizes the importance 

of shared terminology. Historically, subtle discrepancies have 

existed between formal guidelines and the subclasses output 

by the classifier. These discrepancies partly stem from the fact 

that diagnostic guidelines evolve on the basis of established clin-

ical evidence, whereas classifier outputs may temporarily adopt 

more provisional (and often more granular) subclass designa-

tions when new molecular subgroups first emerge. To bridge 

this gap, a global panel of neuropathologists and molecular 

neuro-oncologists convened to refine and align subclass anno-

tations, culminating in the updated nomenclature for both newly 

discovered and long-standing tumor entities identified by the 

classifier. Such efforts ensure that the classifier keeps pace 

with refinements in disease knowledge while maintaining coher-

ence with diagnostic standards, ultimately improving accep-

tance and global dissemination.

Application of DNA methylation classification in routine diag-

nostics has advanced with unprecedented speed, catalyzed by 

the demonstrated clinical value of methylation-based tumor sub-

typing in independent prospective studies. 50–52 Adoption of the 

technology can be challenging for users new to molecular testing 

based on high-dimensional data, raising questions regarding 

robust quality control and cross-validation of results. Although 

multiple classifier tools may emerge—possibly using divergent 

statistical strategies—the potential redundancy could bolster 

procedural safety. 49 At the same time, discordant outcomes 

among classifiers may generate confusion, particularly if each 

tool adopts slightly different nomenclature or poorly calibrated 

confidence scores. Clear consensus, transparent communica-

tion, and adherence to regulatory guidelines will be essential 

for ensuring that the field continues to move toward improved 

and harmonized, rather than fragmented, diagnostic utility. 

Recent work by Patel et al. 53 introduced the MNP-Flex classi-

fier, trained on the same v12.8 reference dataset, which enables 

accurate classification from methylation data generated by

different sequencing-based methods. Likewise, classifiers 

trained on v11 reference data were designed for use with ultra-

sparse data obtained in intraoperative settings, 54,55 demon-

strating that such pipelines can be applied to third-generation 

sequencing-derived methylation data. This demonstrates that 

methylation-based classification of CNS tumors is not limited 

to arrays but can potentially be applied across essentially all cur-

rent and emerging methylation profiling platforms.

The impact of methylation profiling has also extended beyond 

CNS tumors. A DNA methylation classifier for sarcomas 36 was 

introduced shortly after the original CNS classifier and has 

recently been updated to version 13, 56 underscoring the broad 

applicability of this approach across tumor types. As an 

example, tumors with BCOR internal tandem duplications in 

the CNS and in sarcomas such as clear cell sarcoma of the kid-

ney show highly similar DNA methylation profiles, reflecting 

shared lineage features. 57

Overall, the Heidelberg Methylation Classifier v12.8 represents 

more than an incremental technical update, it embodies a collec-

tive effort to integrate clinical routine, cutting-edge translational 

research, and global equity. Ultimately, ongoing collaboration 

among researchers, clinicians and regulatory bodies will be 

crucial for realizing the full potential of methylation classification 

to improve patient care in neuro-oncology. Looking ahead, the 

impact of such developments will be defined not only by their pre-

cision but by the ability to democratize access to such advanced 

diagnostic methods for patients in diverse healthcare settings.

Limitations of the study

Despite its demonstrated diagnostic potential, the current 

approach has limitations, primarily rooted in its reliance on mi-

croarray technology. There are a substantial capital investment 

and high per-sample cost, thus creating significant access bar-

riers, particularly for institutions with limited resources and 

throughput. This has resulted in an under-representation of 

data from low- and middle-income countries (LMICs) particularly 

in the global south, despite the high incidence rate in these re-

gions. Furthermore, this reliance creates a dependency on a sin-

gle product and its commercial life cycle. A key lesson from 

nearly a decade of providing this service is how challenging it 

is to maintain a stable platform when new array versions are 

released, as each update requires significant bioinformatic 

adaptation to ensure compatibility. This highlights the critical 

tension between technological advancement and the need for 

robust, validated clinical workflows. To begin addressing bar-

riers of cost and global inequity, we have co-founded the Molec-

ular Neuro-Pathology Outreach (MNP-Outreach) Consortium. 

The mission of this initiative is to facilitate the global adoption 

of methylation-based classification in LMICs. By fostering 

collaboration, we aim not only to improve diagnostic access 

but also to fill critical knowledge gaps regarding the molecular 

landscape of CNS tumors in underrepresented populations 

from the global South.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will 

be fulfilled by the lead contact, Dr. Martin Sill (m.sill@kitz.de).
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Materials availability

This study did not generate new materials; all resources used are commercially 

or publicly available.

Data and code availability

• The v12.8 raw reference dataset, containing sensitive personal health 

information, is available through the German Human Genome-Phenome 

Archive (GHGA) under reference number GHGAS89861553411214. Ac-

cess is controlled for data protection and granted for non-commercial 

research use following the execution of a Data Transfer Agreement 

(DTA). The v12.8 classifier is publicly accessible under: https://app. 

epignostix.com/. The code used to train the classifier is publicly avail-

able under: https://github.com/mwsill/mnp_training

• https://github.com/mematt/ml4calibrated450k.

• Any additional information required to reanalyze the data reported in this 

paper is available from the lead contact upon request.
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25. Tauziè de-Espariat, A., Figarella-Branger, D., Mé tais, A., Uro-Coste, E., 
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study utilized a large international cohort of human central nervous system (CNS) tumor samples for the development and vali-

dation of a DNA methylation-based classifier. All procedures involving human participants were conducted in accordance with the 

Declaration of Helsinki and relevant institutional and national guidelines. Written informed consent was obtained from all patients or 

their legal guardians. The study protocol was reviewed and approved by the Ethics Committee of the Medical Faculty Heidelberg 

(reference S-318/2022, approval date 09.05.2022). Sample collection and molecular analyses were additionally approved by the 

respective local institutional review boards or ethics committees at each participating center.

METHOD DETAILS

DNA-methylation array processing

The Illumina Infinium HumanMethylation450 (450k) array, Illumina Infinium MethylationEPIC (EPIC) array and Illumina Infinium 

MethylationEPICv2 (EPICv2) were used to obtain genome-wide DNA methylation data for tumor samples and normal control tissues 

according to the manufacturer’s instructions (Illumina, San Diego, USA). Data not gathered through molecularneuropathology.org, 

were generated at the Genomics and Proteomics Core Facility of the German Cancer Research Center (DKFZ, Heidelberg, Germany) 

and processed accordingly on an iScan device (Illumina). DNA methylation data were generated from fresh-frozen and formalin-fixed 

paraffin-embedded (FFPE) tissue samples. Input DNA quantity for most fresh-frozen samples was >500 ng, while 250 ng was used for 

most FFPE tissues. FFPE-derived DNA was processed using the Infinium FFPE DNA restoration kit. All samples underwent strict on-

chip quality control. Inclusion in the mnp_v12.8 reference dataset required samples to meet two criteria: (1) a median log2 signal >8 

for both the methylated and unmethylated channels, and (2) ≥ 90% of probes achieving a detection P-value <0.05.

All computational analyses were performed in R version 4.3.3 (R Development Core Team, 2024). Raw signal intensities were ob-

tained from IDAT files using the minfi Bioconductor package version 1.21.4. 58 Illumina EPIC, EPICv2 and 450k samples were merged

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Illumina Infinium HumanMethylation450 

(450k) BeadChip Kit

Illumina Cat# WG-314-1003

Illumina Infinium MethylationEPIC 

(EPIC) BeadChip Kit

Illumina Cat# WG-317-1003

Illumina Infinium MethylationEPIC 

v2.0 (EPICv2) BeadChip Kit

Illumina Cat# 20020459

Deposited data

v12.8 CNS Tumor Reference

Dataset (raw IDAT files and metadata)

GHGA GHGA: GHGAS89861553411214; 

https://data.ghga.de/browse?q=GHGAS89861553411214

Software and algorithms

MNP Classifier Training Code this paper https://github.com/mwsill/mnp_training

R The R Project for 

Statistical Computing

v4.3.3; https://www.r-project.org/

minfi R package Aryee et al. 54 v1.21.4; Bioconductor: https://bioconductor.org/ 

packages/minfi; RRID: SCR_012830

limma R package Bioconductor v3.30.11; https://bioconductor.org/packages/limma; 

RRID: SCR_010943

uwot R package CRAN v0.2.3; https://cran.r-project.org/package=uwot

randomForest R package CRAN v4.7–1.2; https://cran.r-project.org/package=randomForest; 

RRID: SCR_015718

glmnet R package CRAN v4.1-8; https://cran.r-project.org/package=glmnet; RRID: SCR_015505

mltest R package CRAN v1.0.1; https://cran.r-project.org/package=mltest

rms R package CRAN v6.8-2; https://cran.r-project.org/package=rms; RRID: SCR_023242

pROC R package CRAN v1.18.5; https://cran.r-project.org/package=pROC; RRID: SCR_24286
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into a combined dataset by selecting the intersection of probes present on both arrays. Each sample was individually normalized by 

performing a background correction (shifting the 5 th percentile of negative control probe intensities to 0) and a dye-bias correction 

(scaling of the mean of normalization control probe intensities to 10,000) for both color channels. Subsequently, a correction for the 

type of material (FFPE/frozen) and array type (450k/EPIC(v2)) was performed by fitting univariable linear models to the log2-trans-

formed intensity values (removeBatchEffect function in the limma package version 3.30.11). The methylated and unmethylated 

signals were corrected individually. Beta-values were calculated from the retransformed intensities using an offset of 100 (as recom-

mended by Illumina).

CNV analysis

CNV analysis was performed as described previously 6 (R-package conumee v1.42.0 and conumee2 v2.1 for EPICv2 arrays).

MGMT status prediction

The methylation status of the MGMT (Methylated-DNA–protein-cysteine methyltransferase) promoter was inferred as previously 

described 6 (R-package mgmtstp27 v0.7).

Non-linear dimension reduction

To perform unsupervised non-linear dimensionality reduction, the 10,000 CpG probes with the highest standard deviation were 

selected, and a UMAP projection was calculated using the umap() function available in the R-package uwot v0.2.3.

Classifier training

Classifier training was performed as described in Capper et al. 6 and Maros et al. 43 First, we applied a permutation-based variable 

importance measure (R-package randomForest v4.7–1.2) to select the 10,000 most informative CpG probes as features for the final 

Random Forest (RF). Unbalanced class sample sizes were taken into account by down sampling each bootstrap sample to the mi-

nority class. Next, a ridge-penalized multinomial logistic-regression model (R-package glmnet v4.1-8) was fitted to calibrate the RF 

output, mapping raw prediction scores to probability estimates. An optimal penalization parameter was chosen by a 10-fold cross-

validation. Combining classifier outputs with a logistic regression model is an ensemble strategy known as stacking. 59

Classifier validation

To evaluate the classifier, a 5-fold nested cross-validation scheme generated out-of-sample RF scores that enabled us to fit and vali-

date the calibration models in each fold. To measure the performance of the classifier the following metrics and figures were gener-

ated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mltest v1.0.1), Confusion Matrix, multiclass 

Log Loss, multiclass Brier Score, Calibration Plots (R-package rms v6.8-2). In addition, receiver operating characteristics (ROC) 

curves and accompanying areas under the curve (AUC) are generated using R-package pROC v1.18.5.

RNA sequencing and fusion calling

RNA sequencing for the purpose of gene fusion calling was performed on a NextSeq 500 or NovaSeq 6000 instrument (Illumina) at the 

Department of Neuropathology Heidelberg as previously described. 60

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational analyses were performed in R version 4.3.3. To measure the performance of the classifier, the following metrics 

were generated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mltest), Confusion Matrix, multi-

class Log Loss, multiclass Brier Score, and Calibration Plots (R-package rms). Receiver operating characteristics (ROC) curves and 

accompanying areas under the curve (AUC) were generated using R-package pROC. Survival analyses in Figures 5 and S5 were visu-

alized using Kaplan-Meier estimates for descriptive purposes. The number of patients (n) for each subgroup is provided in the cor-

responding figure legend.
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