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SUMMARY

DNA methylation-based classification is now central to contemporary neuro-oncology, as highlighted by the
World Health Organization (WHO) classification of central nervous system (CNS) tumors. We present the Hei-
delberg CNS Tumor Methylation Classifier version 12.8 (v12.8), trained on 7,495 methylation profiles, which ex-
pands recognized entities from 91 classes in version 11 (v11) to 184 subclasses. This expansion is a result of
newly identified tumor types discovered through our large online repository and global collaborations, under-
scoring CNS tumor heterogeneity. The random forest-based classifier achieves 95% subclass-level accuracy,
with its well-calibrated probabilistic scores providing a reliable measure of confidence for each classification.
Its hierarchical output structure enables interpretation across subclass, class, family, and superfamily levels,
thereby supporting clinical decisions at multiple granularities. Comparative analyses demonstrate that v12.8
surpasses previous versions and conventional WHO-based approaches. These advances highlight the
improved precision and practical utility of the updated classifier in personalized neuro-oncology.

INTRODUCTION (WHO) classification of central nervous system (CNS) tumors’

lists DNA methylation profiling as a desirable or even essential
DNA methylation-based classification has become a central method for accurately diagnosing several tumor types. In addi-
pillar of state-of-the-art diagnostics in neuro-oncology. Most tion, methylation profiling is now recommended by multiple
prominently, the fifth edition of the World Health Organization guideline authorities and medical societies, such as the National
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DNA methylation encodes a unique combination of informa-
tion—the heritable marks of cell-of-origin and changes incurred
during tumor initiation and progression. This makes it a stable
and reliable resource for tumor typing. Here, we present the
diverse landscape of CNS tumors represented by the Heidelberg
methylation classifier v12.8 and its utility in clinical routine diag-
nostics. DNA methylation-based classification of CNS tumors
was pioneered with the public release of the Heidelberg CNS tu-
mor classifier v11, which was trained on a reference set of 2,801
samples comprising 91 classes primarily based on the existing
WHO tumor types.® The classifier, and all subsequent updates,
were made available to the scientific community for the past 9
years (2016-2025) on the molecularneuropathology.org plat-
form. At the time of data freeze in October 2024, over 160,000
profiles worldwide were analyzed on the platform. In addition
to analyses and database management for the community, the
platform included an end user license agreement (EULA) that
offered users to share data for further development. This facili-
tated the accumulation of diverse DNA methylation profiles
from across the globe. As the data repository expanded, a
considerable number of uploaded samples failed to align with
any of the 91 classes in v11, thus prompting exploratory analyses
that led to identification of previously undefined or misclassified

tumor types. We mainly employed unsupervised approaches to
identify novel clusters using methylation data with further valida-
tion relying on ancillary methods like DNA/RNA sequencing,
immunohistochemistry, etc. Taken together, these findings laid
the groundwork for creating an updated reference set for
v12.8. Multiple novel methylation-defined or -supported entities
from v12.8 are now recognized by the WHO 2021 guidelines,
such as the diffuse glioneuronal tumor with oligodendroglioma-
like features and nuclear clusters (DGONC).” The classifier has
been utilized and validated in independent cohorts across
diverse regions and setups, demonstrating its universal robust-
ness and potential clinical utility.

The value of methylation classification primarily lies in over-
coming the limitations of classical histology-dependent
methods. Owing to its robust nature, it overcomes potential in-
ter-observer variability in reporting and the hypothesis-driven
nature of targeted testing. Furthermore, methylation profiling us-
ing methylation arrays offers prognostic information like copy-
number data and MGMT promoter methylation status in addition
to methylation classification in a single assay.

RESULTS

v12.8 reference set expands classification to 184
hierarchical subclasses

Building upon the reference set of the previously published Hei-
delberg methylation classifier v11 comprising 2,801 samples

Cancer Cell 44, 340-354, February 9, 2026 343
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Figure 1. Overview of the molecularneuropathology.org platform and its utilization

(A) Global distribution of sample uploads to molecularneuropathology.org from October 2016 to February 2025.

(B) UMAP projection of 97,213 CNS tumor samples, dots are colored by the v11 classifier confidence score levels for each sample, as indicated in the legend. The
x and y axes represent the first and second dimensions of the non-linear UMAP projection, respectively.

(C) Flow diagram illustrating the Machine Learning Operations (MLOps) life cycle used for model training, validation, deployment, and maintenance for the MNP

classifier.

and our large database of over 160,000 samples (Figure 1), we
expanded the reference set for v12.8 to 7,495 CNS methylation
profiles (Figures 2 and S1). Of these, approximately 19% derive
from the previous v11 cohort, preserving continuity and consis-
tency with established diagnostic categories. An additional 11%
originate from user submissions via our publicly accessible web
platform. While these represent a relatively small proportion of
the final training dataset, the diversity of the uploaded samples
played a valuable supporting role in identifying new tumor en-
tities. The remaining samples were either diagnostic cases
added to increase the sample size of previously underrepre-
sented classes or sourced from institutional collaborations,
particularly those focusing on well-characterized entities such
as meningiomas,® posterior fossa (PF) A and PFB ependymo-
mas,”'® and medulloblastomas.'"'?

To leverage the growing volume of methylation profiles, we
regularly performed non-linear dimensionality reduction ana-
lyses —specifically, t-distributed stochastic neighbor embed-
ding (t-SNE) and uniform manifold approximation and projection
(UMAP) (Figure 3A). These methods enabled unsupervised
exploratory data analysis, revealing new, distinct clusters consti-
tuting samples that were previously unclassifiable under the
original (v11) framework (Figures 3B, 3C, and S2). Visual inspec-
tion of t-SNE and UMAP plots, in combination with molecular
characterization and clinical data of samples helped differentiate
relevant emerging tumor clusters from known entities, prompting
identification of novel subclasses and refinement of existing
ones. In addition, methylation profiling using methylation arrays
yields genome-wide copy-number variation (CNV) data and
MGMT (methylated-DNA-protein-cysteine methyltransferase)

344 Cancer Cell 44, 340-354, February 9, 2026

promoter methylation status independently of methylation clas-
sification from the same assay. This unified assay is highly effi-
cient and conserves precious tissue in addition to being essential
for contemporary CNS tumor diagnostics. Copy number data
robustly identifies pathognomonic and prognostic alterations in
multiple entities particularly diffuse gliomas and meningiomas.
This information is indispensable for characterizing emerging en-
tities from unsupervised clustering of methylation data. For
example, the newly described glioneuronal tumor with ATRX
alteration (GTAKA) subclass is known to harbor homozygous
CDKN2A/B deletions in ~50% of cases, ATRX alterations and
importantly recurrent targetable NTRK fusions (Figure S3A)."®
In the same way, the novel entity DGONC was found to harbor
a characteristic monosomy of chromosome 14 or homozygous
CDKN2A/B deletion (Figure S3B).” Thus, methylation-based
classification can directly guide the search for actionable thera-
peutic alterations. Similarly, the CNV profile can provide strong
evidence for other targetable alterations, such as the character-
istic tandem duplication at the BRAF locus indicative of a
KIAA1549:BRAF fusion, which can be confirmed by transcript-
level analysis (Figure S4). This multi-faceted approach,
combining unsupervised clustering with detailed CNV and clin-
ical and molecular analysis, allowed us to systematically incor-
porate these new entities, effectively doubling the total number
of subclasses to 184, with the newly added entities detailed in
Table 1.

Alongside the expansion of tumor classes, we introduced a
four-tier hierarchical structure (Figures 2 and S1; Table S1) de-
signed to reflect the complex biological relationships between
tumor entities. While subclasses denote the highest granularity,
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Figure 2. Training dataset for v12.8
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(A) UMAP projection of 7,495 samples used for training the v12.8 classifier. The x and y axes represent the first and second dimensions of the non-linear UMAP

projection, respectively.

(B) Legend indicating color code for subclasses shown in (A). Letters in rounded brackets before abbreviation of the subclass indicate “evidence level” for the
respective subclass. Each broad category shown in bold in the legend is a superfamily, families are indicated using a solid bracket on the second level adjacent to
the colored blocks, classes are indicated using a dotted-line bracket at the first level. Due to the large number of subclasses, only six superfamilies are highlighted

here. The remaining superfamilies and their corresponding families, cl
See also Figure S1; Table S1.

established diagnostic categories, supported by robust clinical,
histological, and molecular evidence, generally reside at the
“family” or “class” level. Newly recognized entities, often
defined by subtle epigenetic variations and with clinical rele-
vance that may still be unresolved, are usually assigned to the
subclass level. Moreover, superfamilies commonly correspond
to the broad WHO categories. As a conservative approach, the
classifier defaults to higher-tier assignments if subclass bound-
aries are not clearly defined. This hierarchical system is meant to
provide a framework that mirrors the clinical and biological
complexity of CNS tumors. Furthermore, we formulated evi-
dence levels as annotations for each entity. These annotations,
together with relevant publications, are listed in Table S1 and
provide guidance on the available information about the entities
and their alignment with the current WHO classification
(Figures 2 and S1). Level a refers to tumor entities identical to
the WHO 2021. Level b refers to entities defined by large single
or more than one smaller dataset published describing the
type/subtype as molecularly and/or clinically distinct, or the
methylation class represents a distinct fraction of an established
WHO 2021 tumor class. Level c refers to entities described by a
single small dataset or case series. Level d refers to entities that
are solely based on clustering signals in a t-SNE or UMAP. The
annotation is typically provided at the most granular layer, and
in addition at a higher layer if the latter matches a WHO type or
subtype. The definitions, hierarchical levels and annotations

and subcl

are shown in Figure S1.

were curated and reviewed by an international group of
neuropathologists.

v12.8 classifier achieves 95% cross-validated accuracy
while providing well-calibrated, probabilistic

confidence scores

To train the classification model, we followed the random forest-
based approach described previously.®* We evaluated the per-
formance of the classifier using a 5-fold nested cross-validation
scheme. All subclasses achieved a balanced accuracy greater
than 0.75, with 175 out of 184 subclasses exceeding 0.9 in
balanced accuracy (Figure 4A).

The classifier provides probabilistic confidence scores for
each prediction. Our new hierarchical system leverages these
scores by summing the probabilities of mutually exclusive sub-
classes to calculate parent-category probabilities. This
approach provides more robust diagnostic guidance at higher
tiers of the hierarchy. As observed with the v11 classifier, most
“errors” occur between closely related subclasses or classes,
such as among different subclasses (*) of posterior fossa group
A (EPN_PFA_*) ependymomas (Figure 4B), between subclasses
of group 3 and 4 medulloblastomas (MB_G34_%), or among
benign meningioma subclasses (MNG_BEN_*). While some of
these newly delineated subclasses indeed correlate with
different prognostic outcomes, as described in their respective
publications, most subclasses currently lack direct clinical
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Figure 3. UMAP projection comparing classification performance of mnp_v11b6 and mnp_v12.8

(A) Methylation profiles of 97,213 CNS tumor samples, including the v12.8 training data, classified using the v12.8 classifier, where all samples achieve a
classification score of >0.7 and are colored according to the v12.8 color scheme for the subclass. The labels are the abbreviation for the family level. The x and y
axes represent the first and second dimensions of the non-linear UMAP projection, respectively.

(B) Sankey plot showing scores for predictions with the v11 classifier and hierarchical levels of the v12.8 classifier respectively for the samples illustrated in (A).
(C) Bar-plot indicates log10-scaled number of v12 subclass predictions for samples not classifiable using v11.

See also Figure S2.

implications, making aggregated probability scores at higher hi-
erarchical levels sufficient for guiding diagnostic decisions ac-
cording to current knowledge.

Overall, the classifier achieved a 95% subclass-level accuracy
and a Brier score of 0.028. In multiclass classification, the Brier
score measures the mean squared difference between predicted
probabilities (i.e., calibrated classifier scores) and observed
class frequencies, indicating that the probability estimates are
exceptionally well-calibrated and outperform those of the orig-
inal v11 classifier (Figures 4C-4E).

The 0.9 confidence threshold provides a reliable cutoff
for clinical use

Similar to the previous v11 classifier, we recommend a threshold
of 0.9 across all tumor entities at the family level in v12.8. This
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threshold was selected because it showed good overall perfor-
mance in our cross-validation across all subclasses in both the
v11 and v12.8 training datasets, and because it is straightfor-
ward to communicate in clinical practice. In addition, we per-
formed one-vs-all receiver operating characteristics (ROC) ana-
lyses for each subclass against all others and selected the
threshold that maximizes Youden’s index, thus optimally
balancing sensitivity and specificity (Figure 4D; Table S1). The
highest Youden-based threshold was 0.77, indicating that a
0.9 cutoff is somewhat conservative for most subclasses. Never-
theless, applying a 0.9 threshold helps maintain high sensitivity
for certain subclasses. Ultimately, the well-calibrated probability
scores provided by our classifier allow users to make informed
decision-making in the context of other available complementary
clinical, histological, and molecular data.**
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Table 1. Overview of newly added or expanded tumor classes in the v12.8 classifier

Broad Tumor Category

Tumor Class/Subclass and Key Features

Reference(s)

Meningiomas Subclasses of Meningioma

Clear cell meningioma (SMARCE1-mutant)

Ependymomas Ependymoma, subtypes PFA and PFB
Ependymoma, ZFTA-fused
Spinal ependymoma, MYCN-amplified

Medulloblastomas Wingless class (WNT), subtypes of

Sonic Hedgehog (SHH) medulloblastomas

and consensus subtypes of

non-WNT/non-SHH medulloblastomas.
Gliomas &
Glioneuronal Tumors

Diffuse leptomeningeal glioneuronal
tumors (DLGNT)

Diffuse glioneuronal tumor with
nuclear clusters (DGONC)

IDH-mutant oligosarcomas

Glioblastomas with primitive neuronal component

Glioneuronal tumor with ATRX
alteration (GTAKA)

Gliomas with MYB/MYBL1 alteration

Cribriform neuroepithelial tumors
(SMARCB1-deficient)

CNS neuroblastoma, FOXR2-activated

Embryonal &
Neuroepithelial Tumors

Embryonal tumors with BRD4::LEUTX fusion
Embryonal tumors with PLAG-family amplification
Neuroepithelial tumors with PATZ1-fusions

CNS Tumor with BCOR Internal Tandem Duplication

CNS tumors with EP300::BCOR fusion
Intraocular medulloepithelioma
Retinoblastoma, MYCN-activated
Rhabdomyosarcoma subtypes

Retinal Tumors

Sarcomas &

Mesenchymal Tumors
Plexiform neurofibromas
Langerhans cell histiocytosis

Other CNS &
Related Tumors

Germ cell tumors

Pineal parenchymal tumors of
intermediate differentiation

Neuroblastomas (subtypes)

Malignant melanotic nerve sheath tumors

Sinonasal undifferentiated carcinoma, IDH2-mutant

Sahm et al.®
Sievers et al.’*

Pajtler et al.®; Cavalli et al."®

Zheng et al.’®

Ghasemi et al.'®

Cavalli et al."’; Sharma et al.’?;
Taylor et al.'’; Hovestadt et al.'®

Deng et al.'®

Deng et al.”

Suwala et al.?°

Suwala et al.?’

Bogumil et al."®

Chung et al.??; Wefers et al.®

Johann et al.?*
Tauziéde-Espariat et al.?”
Andreiuolo et al.”®

Keck et al.?’

Alhalabi et al.”®

Sturm et al.”®

Tauziéde-Espariat et al.*°
Zheng et al."®

Ghasemi et al.’®

Clay et al.®'; .52

Mahoney et a
Terry et al.>; Koelsche et al.**

Grit et al.*®

Koelsche et al.*®

Fukushima et al.>”; Williams et al.®%; Kubota et al.*®
Dogan et al.*°

Pfaff et al.*’

Henrich et al.*?

See also Figures S3 and S4.

v12.8 outperforms v1i1 and resolves previously
unclassifiable tumors

Among the samples in our methylation database, 97,213
achieved a v12.8 classifier score of >0.7 at the subclass level
(Figure 3A). When applying the v11 classifier to this cohort,
only 79,749 samples (82%) could be classified with a confidence
score of >0.7 (Figures 3B and 3C). These previously unclassifi-
able cases were successfully classified into newly identified sub-
classes as well as some existing classes, thus benefiting from
the increased training data and refined classification scheme in
v12.8. Of the samples in the latter category (v11 score <0.7),
2,128 (12%) were classified as glioblastoma, IDH-wild type,
mesenchymal type, 1,422 (8%) as glioblastoma, IDH-wild type,

RTK1/RTK2, and 587 (3%) as IDH-mutant astrocytoma with
scores >0.7, thus underscoring the higher confidence of the
v12.8 classifier in previously established entities. Overall, we
demonstrate the improved performance of v12.8, which accom-
modates newly discovered tumor types and provides more
robust classification for previously recognized entities.

The number of newly identified classes has steadily increased
over the past years, now reaching a plateau state. To further
explore the dynamics of rare subclass discovery, we performed
an analysis of 14 subclasses with <50 cases each in the full
cohort of 97,213 CNS tumors (Figure S2). The model projects
that, given a throughput of 1,236 cases per month, it would
take on average 2.9 years to identify 10 new cases of a typical
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Figure 4. 5-fold nested cross-validation performance of the v12.8 classifier
(A) Bar plot showing the balanced accuracy for each of the 184 subclasses, as derived from 5-fold nested cross-validation.
(B) Confusion matrix focusing on the ependymoma superfamily, where the majority of misclassifications occur between subclasses that belong to the same class

or family (indicated by green and blue rectangles, respectively).

(C) Calibration plot comparing predicted probabilities with observed outcomes, illustrating the degree of score calibration across subclasses.
(D) Scatterplot of subclass-specific Youden-optimal thresholds with color-coded tumor classes and a red dashed line at 0.9 marking the recommended

threshold.

(E) Table summarizing overall performance metrics: accuracy, F1-score, log loss, and Brier score, evaluated at each hierarchical level (subclass, class, family,

superfamily).
See also Table S1.

rare subclass. In light of nearly a decade of continuous data
collection, we posit that the likelihood that entirely new and
clearly distinct entities remain undiscovered is therefore low,
although this cannot be excluded.

v12.8 subclasses show prognostic relevance in
independent cohorts

To show the clinical potential of the v12.8 classifier, we analyzed
data from the prospective, population-based Molecular Neuro-
pathology 2.0 (MNP 2.0) study,*® conducted within the German

348 Cancer Cell 44, 340-354, February 9, 2026

pediatric neuro-oncology “Treatment Network HIT”, which
featured blinded central neuropathological review alongside mo-
lecular testing. In this cohort of over 1,200 newly diagnosed pe-
diatric CNS tumor patients, the combined application of DNA
methylation profiling and targeted panel sequencing improved
the accuracy of tumor classification and identified cases where
molecular data clarified ambiguous histology. Kaplan-Meier
analysis of 80 ependymoma cases and 171 medulloblastoma
cases, grouped by their v12.8 methylation subclass, revealed
distinct survival curves for each subclass (Figures 5A and 5B),
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Figure 5. Prognostic performance of the v12.8 classifier compared to alternative explanatory variables in Cox proportional hazards models
(A) Kaplan-Meier estimates of overall survival for ependymoma patients from the MNP2.0 cohort stratified by v12.8 methylation subclass. The x axis represents

time in months, and the y axis represents the survival probability.

(B) Kaplan-Meier estimates of overall survival for medulloblastoma patients from the MNP2.0 cohort stratified by v12.8 methylation subclass. The x axis rep-

resents time in months, and the y axis represents the survival probability.

(C) Sankey plot showing methylation subclass predictions (score >0.9) for histologically assigned high-grade gliomas in the MNP2.0 cohort. Subclasses outlined

in blue indicate low grade tumors.

(D) Kaplan-Meier estimates of progression-free survival from the meningioma cohort® stratified by v12.8 methylation subclass. The x axis represents time in
months, and the y axis represents the survival probability. Color of curves indicates v12.8 subclass.

See also Figure S5.

highlighting meaningful prognostic differences. One important
finding of the MNP2.0 study was that a subset of tumors origi-
nally diagnosed as high-grade gliomas (HGG) by conventional
histopathology were classified as low-grade gliomas (LGG)
when methylation results were taken into account; these patients
showed more favorable outcomes during a median follow-up of
2.5 years, indicating that methylation-based classification could
guide less intensive therapy. In line with this finding, Figure 5C
shows a Sankey plot of 96 cases initially reported as “HGG”.
Of these, 22% were assigned to a lower grade tumor subclass
with a score of at least 0.9 by the v12.8 classifier.

In another large study of meningiomas, the DNA-methylation
family assignment was combined with WHO histological grading
and chromosomal CNV data to develop an integrated molecular-
morphologic score for risk stratification that significantly outper-
formed WHO grading alone.“®*” To illustrate this potential of
v12.8 methylation subclasses for risk stratification of meningi-
omas, Figure 5D shows the distinct Kaplan-Meier curves of pre-

dicted methylation subclasses for 958 meningioma patients
included in this cohort. To further illustrate the clinical relevance
of subclass annotations, we provide additional survival analyses
in Figure S5. These include overall survival of patients from the
HIT-2000 trial stratified by non-WNT/non-SHH medulloblastoma
subclasses*® and event-free survival of patients from the MNP2
study assigned to a specific subclass of the “low-grade glial/
glioneuronal/neuroepithelial tumor” superfamily.

Overall, these three studies exemplify that DNA methylation-
based profiling allows for more accurate classification and can
be used for improved risk stratification of patients.

DISCUSSION

Identification of emerging clusters, designation as subclasses
and classes, and their subsequent implementation into diag-
nostic guidelines is inherently an iterative process. The recent
work of the cIMPACT-NOW consortium,*® endorsed by the
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International Society of Neuropathology, offers a framework for
systematically evaluating emerging signals that suggest putative
new tumor entities. Their guidelines recommend gathering
comprehensive molecular, histopathological, and clinical out-
come data before classifying any newly identified epigenetic
cluster as a distinct diagnostic entity. The expanded Heidelberg
Methylation Classifier (v12.8) described here embodies this iter-
ative approach, wherein novel putative entities emerging from
exploratory t-SNE and UMAP clustering undergo continuous
scrutiny and validation by the international neuro-oncology
community.

Although conceived primarily as a research tool, the Heidel-
berg Methylation Classifier has demonstrated profound diag-
nostic potential over time as reflected by its inclusion in multiple
international neuro-oncology guidelines. The classifier pos-
sesses a distinct advantage owing to its scale and the compre-
hensive, meticulously curated reference data. While hypothe-
sis-driven methods are inherently restrictive, our large data
repository combined with an unsupervised approach enabled
the precise classification of established tumor entities and the
identification of previously uncharacterized, ultra-rare entities
that would not be feasible with smaller cohorts.

The v12.8 expansion comes with a clear hierarchical structure
and evidence level annotation, reflecting definitions and rele-
vance of granular entities but also emphasizes the importance
of shared terminology. Historically, subtle discrepancies have
existed between formal guidelines and the subclasses output
by the classifier. These discrepancies partly stem from the fact
that diagnostic guidelines evolve on the basis of established clin-
ical evidence, whereas classifier outputs may temporarily adopt
more provisional (and often more granular) subclass designa-
tions when new molecular subgroups first emerge. To bridge
this gap, a global panel of neuropathologists and molecular
neuro-oncologists convened to refine and align subclass anno-
tations, culminating in the updated nomenclature for both newly
discovered and long-standing tumor entities identified by the
classifier. Such efforts ensure that the classifier keeps pace
with refinements in disease knowledge while maintaining coher-
ence with diagnostic standards, ultimately improving accep-
tance and global dissemination.

Application of DNA methylation classification in routine diag-
nostics has advanced with unprecedented speed, catalyzed by
the demonstrated clinical value of methylation-based tumor sub-
typing in independent prospective studies.**>? Adoption of the
technology can be challenging for users new to molecular testing
based on high-dimensional data, raising questions regarding
robust quality control and cross-validation of results. Although
multiple classifier tools may emerge—possibly using divergent
statistical strategies—the potential redundancy could bolster
procedural safety.*® At the same time, discordant outcomes
among classifiers may generate confusion, particularly if each
tool adopts slightly different nomenclature or poorly calibrated
confidence scores. Clear consensus, transparent communica-
tion, and adherence to regulatory guidelines will be essential
for ensuring that the field continues to move toward improved
and harmonized, rather than fragmented, diagnostic utility.

Recent work by Patel et al.>® introduced the MNP-Flex classi-
fier, trained on the same v12.8 reference dataset, which enables
accurate classification from methylation data generated by
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different sequencing-based methods. Likewise, classifiers
trained on v11 reference data were designed for use with ultra-
sparse data obtained in intraoperative settings,’*>> demon-
strating that such pipelines can be applied to third-generation
sequencing-derived methylation data. This demonstrates that
methylation-based classification of CNS tumors is not limited
to arrays but can potentially be applied across essentially all cur-
rent and emerging methylation profiling platforms.

The impact of methylation profiling has also extended beyond
CNS tumors. A DNA methylation classifier for sarcomas®® was
introduced shortly after the original CNS classifier and has
recently been updated to version 13,°° underscoring the broad
applicability of this approach across tumor types. As an
example, tumors with BCOR internal tandem duplications in
the CNS and in sarcomas such as clear cell sarcoma of the kid-
ney show highly similar DNA methylation profiles, reflecting
shared lineage features.”’

Overall, the Heidelberg Methylation Classifier v12.8 represents
more than an incremental technical update, it embodies a collec-
tive effort to integrate clinical routine, cutting-edge translational
research, and global equity. Ultimately, ongoing collaboration
among researchers, clinicians and regulatory bodies will be
crucial for realizing the full potential of methylation classification
to improve patient care in neuro-oncology. Looking ahead, the
impact of such developments will be defined not only by their pre-
cision but by the ability to democratize access to such advanced
diagnostic methods for patients in diverse healthcare settings.

Limitations of the study

Despite its demonstrated diagnostic potential, the current
approach has limitations, primarily rooted in its reliance on mi-
croarray technology. There are a substantial capital investment
and high per-sample cost, thus creating significant access bar-
riers, particularly for institutions with limited resources and
throughput. This has resulted in an under-representation of
data from low- and middle-income countries (LMICs) particularly
in the global south, despite the high incidence rate in these re-
gions. Furthermore, this reliance creates a dependency on a sin-
gle product and its commercial life cycle. A key lesson from
nearly a decade of providing this service is how challenging it
is to maintain a stable platform when new array versions are
released, as each update requires significant bioinformatic
adaptation to ensure compatibility. This highlights the critical
tension between technological advancement and the need for
robust, validated clinical workflows. To begin addressing bar-
riers of cost and global inequity, we have co-founded the Molec-
ular Neuro-Pathology Outreach (MNP-Outreach) Consortium.
The mission of this initiative is to facilitate the global adoption
of methylation-based classification in LMICs. By fostering
collaboration, we aim not only to improve diagnostic access
but also to fill critical knowledge gaps regarding the molecular
landscape of CNS tumors in underrepresented populations
from the global South.

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Dr. Martin Sill (m.sill@kitz.de).
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Materials availability
This study did not generate new materials; all resources used are commercially
or publicly available.

Data and code availability

® The v12.8 raw reference dataset, containing sensitive personal health
information, is available through the German Human Genome-Phenome
Archive (GHGA) under reference number GHGAS89861553411214. Ac-
cess is controlled for data protection and granted for non-commercial
research use following the execution of a Data Transfer Agreement
(DTA). The v12.8 classifier is publicly accessible under: https://app.
epignostix.com/. The code used to train the classifier is publicly avail-
able under: https://github.com/mwsill/mnp_training

® https://github.com/mematt/ml4calibrated450k.

® Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Critical commercial assays

lllumina Infinium HumanMethylation450 lllumina Cat# WG-314-1003
(450k) BeadChip Kit

lllumina Infinium MethylationEPIC lllumina Cat# WG-317-1003
(EPIC) BeadChip Kit

lllumina Infinium MethylationEPIC lllumina Cat# 20020459
v2.0 (EPICv2) BeadChip Kit

Deposited data

v12.8 CNS Tumor Reference GHGA GHGA: GHGAS89861553411214;
Dataset (raw IDAT files and metadata) https://data.ghga.de/browse?q=GHGAS89861553411214
Software and algorithms
MNP Classifier Training Code this paper https://github.com/mwsill/mnp_training
R The R Project for v4.3.3; https://www.r-project.org/
Statistical Computing

minfi R package Aryee et al.** v1.21.4; Bioconductor: https://bioconductor.org/

packages/minfi; RRID: SCR_012830
limma R package Bioconductor v3.30.11; https://bioconductor.org/packages/limma;

RRID: SCR_010943
uwot R package CRAN v0.2.3; https://cran.r-project.org/package=uwot
randomForest R package CRAN v4.7-1.2; https://cran.r-project.org/package=randomForest;

RRID: SCR_015718
glmnet R package CRAN v4.1-8; https://cran.r-project.org/package=glmnet; RRID: SCR_015505
mitest R package CRAN v1.0.1; https://cran.r-project.org/package=mltest
rms R package CRAN v6.8-2; https://cran.r-project.org/package=rms; RRID: SCR_023242
pROC R package CRAN v1.18.5; https://cran.r-project.org/package=pROC; RRID: SCR_24286

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study utilized a large international cohort of human central nervous system (CNS) tumor samples for the development and vali-
dation of a DNA methylation-based classifier. All procedures involving human participants were conducted in accordance with the
Declaration of Helsinki and relevant institutional and national guidelines. Written informed consent was obtained from all patients or
their legal guardians. The study protocol was reviewed and approved by the Ethics Committee of the Medical Faculty Heidelberg
(reference S-318/2022, approval date 09.05.2022). Sample collection and molecular analyses were additionally approved by the
respective local institutional review boards or ethics committees at each participating center.

METHOD DETAILS

DNA-methylation array processing
The lllumina Infinium HumanMethylation450 (450k) array, lllumina Infinium MethylationEPIC (EPIC) array and lllumina Infinium
MethylationEPICv2 (EPICv2) were used to obtain genome-wide DNA methylation data for tumor samples and normal control tissues
according to the manufacturer’s instructions (lllumina, San Diego, USA). Data not gathered through molecularneuropathology.org,
were generated at the Genomics and Proteomics Core Facility of the German Cancer Research Center (DKFZ, Heidelberg, Germany)
and processed accordingly on an iScan device (lllumina). DNA methylation data were generated from fresh-frozen and formalin-fixed
paraffin-embedded (FFPE) tissue samples. Input DNA quantity for most fresh-frozen samples was >500 ng, while 250 ng was used for
most FFPE tissues. FFPE-derived DNA was processed using the Infinium FFPE DNA restoration kit. All samples underwent strict on-
chip quality control. Inclusion in the mnp_v12.8 reference dataset required samples to meet two criteria: (1) a median log2 signal >8
for both the methylated and unmethylated channels, and (2) > 90% of probes achieving a detection P-value <0.05.

All computational analyses were performed in R version 4.3.3 (R Development Core Team, 2024). Raw signal intensities were ob-
tained from IDAT files using the minfi Bioconductor package version 1.21.4.% lllumina EPIC, EPICv2 and 450k samples were merged
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into a combined dataset by selecting the intersection of probes present on both arrays. Each sample was individually normalized by
performing a background correction (shifting the 5" percentile of negative control probe intensities to 0) and a dye-bias correction
(scaling of the mean of normalization control probe intensities to 10,000) for both color channels. Subsequently, a correction for the
type of material (FFPE/frozen) and array type (450k/EPIC(v2)) was performed by fitting univariable linear models to the log2-trans-
formed intensity values (removeBatchEffect function in the limma package version 3.30.11). The methylated and unmethylated
signals were corrected individually. Beta-values were calculated from the retransformed intensities using an offset of 100 (as recom-
mended by lllumina).

CNV analysis
CNV analysis was performed as described previously® (R-package conumee v1.42.0 and conumee?2 v2.1 for EPICv2 arrays).

MGMT status prediction
The methylation status of the MGMT (Methylated-DNA-protein-cysteine methyltransferase) promoter was inferred as previously
described® (R-package mgmtstp27 v0.7).

Non-linear dimension reduction
To perform unsupervised non-linear dimensionality reduction, the 10,000 CpG probes with the highest standard deviation were
selected, and a UMAP projection was calculated using the umap() function available in the R-package uwot v0.2.3.

Classifier training

Classifier training was performed as described in Capper et al.® and Maros et al.** First, we applied a permutation-based variable
importance measure (R-package randomForest v4.7-1.2) to select the 10,000 most informative CpG probes as features for the final
Random Forest (RF). Unbalanced class sample sizes were taken into account by down sampling each bootstrap sample to the mi-
nority class. Next, a ridge-penalized multinomial logistic-regression model (R-package glmnet v4.1-8) was fitted to calibrate the RF
output, mapping raw prediction scores to probability estimates. An optimal penalization parameter was chosen by a 10-fold cross-
validation. Combining classifier outputs with a logistic regression model is an ensemble strategy known as stacking.>®

Classifier validation

To evaluate the classifier, a 5-fold nested cross-validation scheme generated out-of-sample RF scores that enabled us to fit and vali-
date the calibration models in each fold. To measure the performance of the classifier the following metrics and figures were gener-
ated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mltest v1.0.1), Confusion Matrix, multiclass
Log Loss, multiclass Brier Score, Calibration Plots (R-package rms v6.8-2). In addition, receiver operating characteristics (ROC)
curves and accompanying areas under the curve (AUC) are generated using R-package pROC v1.18.5.

RNA sequencing and fusion calling
RNA sequencing for the purpose of gene fusion calling was performed on a NextSeq 500 or NovaSeq 6000 instrument (lllumina) at the
Department of Neuropathology Heidelberg as previously described.®’

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational analyses were performed in R version 4.3.3. To measure the performance of the classifier, the following metrics
were generated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mitest), Confusion Matrix, multi-
class Log Loss, multiclass Brier Score, and Calibration Plots (R-package rms). Receiver operating characteristics (ROC) curves and
accompanying areas under the curve (AUC) were generated using R-package pROC. Survival analyses in Figures 5 and S5 were visu-
alized using Kaplan-Meier estimates for descriptive purposes. The number of patients (n) for each subgroup is provided in the cor-
responding figure legend.
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