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SUMMARY

DNA methylation-based classification is now central to contemporary neuro-oncology, as highlighted by the

World Health Organization (WHO) classification of central nervous system (CNS) tumors. We present the Hei-

delberg CNS Tumor Methylation Classifier version 12.8 (v12.8), trained on 7,495methylation profiles, which ex-

pands recognized entities from 91 classes in version 11 (v11) to 184 subclasses. This expansion is a result of

newly identified tumor types discovered through our large online repository and global collaborations, under-

scoring CNS tumor heterogeneity. The random forest-based classifier achieves 95% subclass-level accuracy,

with its well-calibrated probabilistic scores providing a reliable measure of confidence for each classification.

Its hierarchical output structure enables interpretation across subclass, class, family, and superfamily levels,
thereby supporting clinical decisions at multiple granularities. Comparative analyses demonstrate that v12.8

surpasses previous versions and conventional WHO-based approaches. These advances highlight the

improved precision and practical utility of the updated classifier in personalized neuro-oncology.

INTRODUCTION

DNA methylation-based classification has become a central

pillar of state-of-the-art diagnostics in neuro-oncology. Most

prominently, the fifth edition of the World Health Organization

(WHO) classification of central nervous system (CNS) tumors1

lists DNA methylation profiling as a desirable or even essential

method for accurately diagnosing several tumor types. In addi-

tion, methylation profiling is now recommended by multiple

guideline authorities and medical societies, such as the National
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Karl H. Plate,6,7,8 Michael Platten,37,89,90,91,92 Matthias Preusser,35 Torsten Pietsch,93 Marco Prinz,94,95

Guido Reifenberger,96 Bjarne W. Kristensen,97,98 Marcel Kool,1,2,37,99,100 Volker Hovestadt,101,102,103 David W. Ellison,104

Thomas S. Jacques,105 Pascale Varlet,106 Nima Etminan,107 Till Acker,42 Michael Weller,108 Christine L. White,109

59Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
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Comprehensive Cancer Network (NCCN),2 European Associa-

tion of Neuro-Oncology (EANO),3 International Collaboration on

Cancer Reporting (ICCR)4 or Royal College of Pathologists

(RCPath UK).5

DNA methylation encodes a unique combination of informa-

tion—the heritable marks of cell-of-origin and changes incurred

during tumor initiation and progression. This makes it a stable

and reliable resource for tumor typing. Here, we present the

diverse landscape of CNS tumors represented by the Heidelberg

methylation classifier v12.8 and its utility in clinical routine diag-

nostics. DNA methylation-based classification of CNS tumors

was pioneered with the public release of the Heidelberg CNS tu-

mor classifier v11, which was trained on a reference set of 2,801

samples comprising 91 classes primarily based on the existing

WHO tumor types.6 The classifier, and all subsequent updates,

were made available to the scientific community for the past 9

years (2016–2025) on the molecularneuropathology.org plat-

form. At the time of data freeze in October 2024, over 160,000

profiles worldwide were analyzed on the platform. In addition

to analyses and database management for the community, the

platform included an end user license agreement (EULA) that

offered users to share data for further development. This facili-

tated the accumulation of diverse DNA methylation profiles

from across the globe. As the data repository expanded, a

considerable number of uploaded samples failed to align with

any of the 91 classes in v11, thus prompting exploratory analyses

that led to identification of previously undefined or misclassified

tumor types. We mainly employed unsupervised approaches to

identify novel clusters using methylation data with further valida-

tion relying on ancillary methods like DNA/RNA sequencing,

immunohistochemistry, etc. Taken together, these findings laid

the groundwork for creating an updated reference set for

v12.8. Multiple novel methylation-defined or -supported entities

from v12.8 are now recognized by the WHO 2021 guidelines,

such as the diffuse glioneuronal tumor with oligodendroglioma-

like features and nuclear clusters (DGONC).7 The classifier has

been utilized and validated in independent cohorts across

diverse regions and setups, demonstrating its universal robust-

ness and potential clinical utility.

The value of methylation classification primarily lies in over-

coming the limitations of classical histology-dependent

methods. Owing to its robust nature, it overcomes potential in-

ter-observer variability in reporting and the hypothesis-driven

nature of targeted testing. Furthermore, methylation profiling us-

ing methylation arrays offers prognostic information like copy-

number data andMGMT promoter methylation status in addition

to methylation classification in a single assay.

RESULTS

v12.8 reference set expands classification to 184

hierarchical subclasses

Building upon the reference set of the previously published Hei-

delberg methylation classifier v11 comprising 2,801 samples
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v12.8 outperforms v11 and resolves previously

unclassifiable tumors

Among the samples in our methylation database, 97,213

achieved a v12.8 classifier score of ≥0.7 at the subclass level

(Figure 3A). When applying the v11 classifier to this cohort,

only 79,749 samples (82%) could be classified with a confidence

score of ≥0.7 (Figures 3B and 3C). These previously unclassifi-

able cases were successfully classified into newly identified sub-

classes as well as some existing classes, thus benefiting from

the increased training data and refined classification scheme in

v12.8. Of the samples in the latter category (v11 score <0.7),

2,128 (12%) were classified as glioblastoma, IDH-wild type,

mesenchymal type, 1,422 (8%) as glioblastoma, IDH-wild type,

RTK1/RTK2, and 587 (3%) as IDH-mutant astrocytoma with

scores ≥0.7, thus underscoring the higher confidence of the

v12.8 classifier in previously established entities. Overall, we

demonstrate the improved performance of v12.8, which accom-

modates newly discovered tumor types and provides more

robust classification for previously recognized entities.

The number of newly identified classes has steadily increased

over the past years, now reaching a plateau state. To further

explore the dynamics of rare subclass discovery, we performed

an analysis of 14 subclasses with ≤50 cases each in the full

cohort of 97,213 CNS tumors (Figure S2). The model projects

that, given a throughput of 1,236 cases per month, it would

take on average 2.9 years to identify 10 new cases of a typical

Table 1. Overview of newly added or expanded tumor classes in the v12.8 classifier

Broad Tumor Category Tumor Class/Subclass and Key Features Reference(s)

Meningiomas Subclasses of Meningioma Sahm et al.8

Clear cell meningioma (SMARCE1-mutant) Sievers et al.14

Ependymomas Ependymoma, subtypes PFA and PFB Pajtler et al.9; Cavalli et al.10

Ependymoma, ZFTA-fused Zheng et al.15

Spinal ependymoma, MYCN-amplified Ghasemi et al.16

Medulloblastomas Wingless class (WNT), subtypes of

Sonic Hedgehog (SHH) medulloblastomas

and consensus subtypes of

non-WNT/non-SHH medulloblastomas.

Cavalli et al.11; Sharma et al.12;

Taylor et al.17; Hovestadt et al.18

Gliomas &

Glioneuronal Tumors

Diffuse leptomeningeal glioneuronal

tumors (DLGNT)

Deng et al.19

Diffuse glioneuronal tumor with

nuclear clusters (DGONC)

Deng et al.7

IDH-mutant oligosarcomas Suwala et al.20

Glioblastomas with primitive neuronal component Suwala et al.21

Glioneuronal tumor with ATRX

alteration (GTAKA)

Bogumil et al.13

Gliomas with MYB/MYBL1 alteration Chung et al.22; Wefers et al.23

Embryonal &

Neuroepithelial Tumors

Cribriform neuroepithelial tumors

(SMARCB1-deficient)

Johann et al.24

CNS neuroblastoma, FOXR2-activated Tauziède-Espariat et al.25

Embryonal tumors with BRD4::LEUTX fusion Andreiuolo et al.26

Embryonal tumors with PLAG-family amplification Keck et al.27

Neuroepithelial tumors with PATZ1-fusions Alhalabi et al.28

CNS Tumor with BCOR Internal Tandem Duplication Sturm et al.29

CNS tumors with EP300::BCOR fusion Tauziède-Espariat et al.30

Intraocular medulloepithelioma Zheng et al.15

Retinal Tumors Retinoblastoma, MYCN-activated Ghasemi et al.16

Sarcomas &

Mesenchymal Tumors

Rhabdomyosarcoma subtypes Clay et al.31; Mahoney et al.32

Malignant melanotic nerve sheath tumors Terry et al.33; Koelsche et al.34

Plexiform neurofibromas Grit et al.35

Langerhans cell histiocytosis Koelsche et al.36

Other CNS &

Related Tumors

Germ cell tumors Fukushima et al.37; Williams et al.38; Kubota et al.39

Sinonasal undifferentiated carcinoma, IDH2-mutant Dogan et al.40

Pineal parenchymal tumors of

intermediate differentiation

Pfaff et al.41

Neuroblastomas (subtypes) Henrich et al.42

See also Figures S3 and S4.
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International Society of Neuropathology, offers a framework for

systematically evaluating emerging signals that suggest putative

new tumor entities. Their guidelines recommend gathering

comprehensive molecular, histopathological, and clinical out-

come data before classifying any newly identified epigenetic

cluster as a distinct diagnostic entity. The expanded Heidelberg

Methylation Classifier (v12.8) described here embodies this iter-

ative approach, wherein novel putative entities emerging from

exploratory t-SNE and UMAP clustering undergo continuous

scrutiny and validation by the international neuro-oncology

community.

Although conceived primarily as a research tool, the Heidel-

berg Methylation Classifier has demonstrated profound diag-

nostic potential over time as reflected by its inclusion in multiple

international neuro-oncology guidelines. The classifier pos-

sesses a distinct advantage owing to its scale and the compre-

hensive, meticulously curated reference data. While hypothe-

sis-driven methods are inherently restrictive, our large data

repository combined with an unsupervised approach enabled

the precise classification of established tumor entities and the

identification of previously uncharacterized, ultra-rare entities

that would not be feasible with smaller cohorts.

The v12.8 expansion comes with a clear hierarchical structure

and evidence level annotation, reflecting definitions and rele-

vance of granular entities but also emphasizes the importance

of shared terminology. Historically, subtle discrepancies have

existed between formal guidelines and the subclasses output

by the classifier. These discrepancies partly stem from the fact

that diagnostic guidelines evolve on the basis of established clin-

ical evidence, whereas classifier outputs may temporarily adopt

more provisional (and often more granular) subclass designa-

tions when new molecular subgroups first emerge. To bridge

this gap, a global panel of neuropathologists and molecular

neuro-oncologists convened to refine and align subclass anno-

tations, culminating in the updated nomenclature for both newly

discovered and long-standing tumor entities identified by the

classifier. Such efforts ensure that the classifier keeps pace

with refinements in disease knowledge while maintaining coher-

ence with diagnostic standards, ultimately improving accep-

tance and global dissemination.

Application of DNA methylation classification in routine diag-

nostics has advanced with unprecedented speed, catalyzed by

the demonstrated clinical value ofmethylation-based tumor sub-

typing in independent prospective studies.50–52 Adoption of the

technology can be challenging for users new tomolecular testing

based on high-dimensional data, raising questions regarding

robust quality control and cross-validation of results. Although

multiple classifier tools may emerge—possibly using divergent

statistical strategies—the potential redundancy could bolster

procedural safety.49 At the same time, discordant outcomes

among classifiers may generate confusion, particularly if each

tool adopts slightly different nomenclature or poorly calibrated

confidence scores. Clear consensus, transparent communica-

tion, and adherence to regulatory guidelines will be essential

for ensuring that the field continues to move toward improved

and harmonized, rather than fragmented, diagnostic utility.

Recent work by Patel et al.53 introduced the MNP-Flex classi-

fier, trained on the same v12.8 reference dataset, which enables

accurate classification from methylation data generated by

different sequencing-based methods. Likewise, classifiers

trained on v11 reference data were designed for use with ultra-

sparse data obtained in intraoperative settings,54,55 demon-

strating that such pipelines can be applied to third-generation

sequencing-derived methylation data. This demonstrates that

methylation-based classification of CNS tumors is not limited

to arrays but can potentially be applied across essentially all cur-

rent and emerging methylation profiling platforms.

The impact of methylation profiling has also extended beyond

CNS tumors. A DNA methylation classifier for sarcomas36 was

introduced shortly after the original CNS classifier and has

recently been updated to version 13,56 underscoring the broad

applicability of this approach across tumor types. As an

example, tumors with BCOR internal tandem duplications in

the CNS and in sarcomas such as clear cell sarcoma of the kid-

ney show highly similar DNA methylation profiles, reflecting

shared lineage features.57

Overall, the Heidelberg Methylation Classifier v12.8 represents

more than an incremental technical update, it embodies a collec-

tive effort to integrate clinical routine, cutting-edge translational

research, and global equity. Ultimately, ongoing collaboration

among researchers, clinicians and regulatory bodies will be

crucial for realizing the full potential of methylation classification

to improve patient care in neuro-oncology. Looking ahead, the

impact of such developments will be defined not only by their pre-

cision but by the ability to democratize access to such advanced

diagnostic methods for patients in diverse healthcare settings.

Limitations of the study

Despite its demonstrated diagnostic potential, the current

approach has limitations, primarily rooted in its reliance on mi-

croarray technology. There are a substantial capital investment

and high per-sample cost, thus creating significant access bar-

riers, particularly for institutions with limited resources and

throughput. This has resulted in an under-representation of

data from low- andmiddle-income countries (LMICs) particularly

in the global south, despite the high incidence rate in these re-

gions. Furthermore, this reliance creates a dependency on a sin-

gle product and its commercial life cycle. A key lesson from

nearly a decade of providing this service is how challenging it

is to maintain a stable platform when new array versions are

released, as each update requires significant bioinformatic

adaptation to ensure compatibility. This highlights the critical

tension between technological advancement and the need for

robust, validated clinical workflows. To begin addressing bar-

riers of cost and global inequity, we have co-founded the Molec-

ular Neuro-Pathology Outreach (MNP-Outreach) Consortium.

The mission of this initiative is to facilitate the global adoption

of methylation-based classification in LMICs. By fostering

collaboration, we aim not only to improve diagnostic access

but also to fill critical knowledge gaps regarding the molecular

landscape of CNS tumors in underrepresented populations

from the global South.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Dr. Martin Sill (m.sill@kitz.de).
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Materials availability

This study did not generate newmaterials; all resources used are commercially

or publicly available.

Data and code availability

• The v12.8 raw reference dataset, containing sensitive personal health

information, is available through theGermanHumanGenome-Phenome

Archive (GHGA) under reference number GHGAS89861553411214. Ac-

cess is controlled for data protection and granted for non-commercial

research use following the execution of a Data Transfer Agreement

(DTA). The v12.8 classifier is publicly accessible under: https://app.

epignostix.com/. The code used to train the classifier is publicly avail-

able under: https://github.com/mwsill/mnp_training

• https://github.com/mematt/ml4calibrated450k.

• Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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Maurage, C.-A., Lhermitte, B., Aline-Fardin, A., Hasty, L., Vasiljevic, A.,

Chiforeanu, D., et al. (2023). CNS neuroblastoma, FOXR2-activated and

its mimics: a relevant panel approach for work-up and accurate diagnosis

of this rare neoplasm. Acta Neuropathol. Commun. 11, 43. https://doi.org/

10.1186/s40478-023-01536-7.

26. Andreiuolo, F., Ferrone, C.K., Rajan, S., Perry, A., Guney, E., Cham, E.,

Giannini, C., Toland, A., Willard, N., de Souza, A.S., et al. (2024).

Molecular and clinicopathologic characteristics of CNS embryonal tumors

with BRD4::LEUTX fusion. Acta Neuropathol. Commun. 12, 42. https://doi.

org/10.1186/s40478-024-01746-7.

27. Keck, M.-K., Sill, M., Wittmann, A., Joshi, P., Stichel, D., Beck, P.,

Okonechnikow, K., Sievers, P., Wefers, A.K., Roncaroli, F., et al. (2023).

Amplification of the PLAG-family genes-PLAGL1 and PLAGL2-is a key

feature of the novel tumor type CNS embryonal tumor with PLAGL ampli-

fication. Acta Neuropathol. 145, 49–69. https://doi.org/10.1007/s00401-

022-02516-2.

28. Alhalabi, K.T., Stichel, D., Sievers, P., Peterziel, H., Sommerkamp, A.C.,

Sturm, D., Wittmann, A., Sill, M., Jäger, N., Beck, P., et al. (2021).
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study utilized a large international cohort of human central nervous system (CNS) tumor samples for the development and vali-

dation of a DNA methylation-based classifier. All procedures involving human participants were conducted in accordance with the

Declaration of Helsinki and relevant institutional and national guidelines. Written informed consent was obtained from all patients or

their legal guardians. The study protocol was reviewed and approved by the Ethics Committee of the Medical Faculty Heidelberg

(reference S-318/2022, approval date 09.05.2022). Sample collection and molecular analyses were additionally approved by the

respective local institutional review boards or ethics committees at each participating center.

METHOD DETAILS

DNA-methylation array processing

The Illumina Infinium HumanMethylation450 (450k) array, Illumina Infinium MethylationEPIC (EPIC) array and Illumina Infinium

MethylationEPICv2 (EPICv2) were used to obtain genome-wide DNAmethylation data for tumor samples and normal control tissues

according to the manufacturer’s instructions (Illumina, San Diego, USA). Data not gathered through molecularneuropathology.org,

were generated at the Genomics and Proteomics Core Facility of the German Cancer Research Center (DKFZ, Heidelberg, Germany)

and processed accordingly on an iScan device (Illumina). DNAmethylation data were generated from fresh-frozen and formalin-fixed

paraffin-embedded (FFPE) tissue samples. Input DNAquantity formost fresh-frozen sampleswas >500 ng, while 250 ngwas used for

most FFPE tissues. FFPE-derived DNA was processed using the Infinium FFPE DNA restoration kit. All samples underwent strict on-

chip quality control. Inclusion in the mnp_v12.8 reference dataset required samples to meet two criteria: (1) a median log2 signal >8

for both the methylated and unmethylated channels, and (2) ≥ 90% of probes achieving a detection P-value <0.05.

All computational analyses were performed in R version 4.3.3 (R Development Core Team, 2024). Raw signal intensities were ob-

tained from IDAT files using the minfi Bioconductor package version 1.21.4.58 Illumina EPIC, EPICv2 and 450k samples were merged

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Illumina Infinium HumanMethylation450

(450k) BeadChip Kit

Illumina Cat# WG-314-1003

Illumina Infinium MethylationEPIC

(EPIC) BeadChip Kit

Illumina Cat# WG-317-1003

Illumina Infinium MethylationEPIC

v2.0 (EPICv2) BeadChip Kit

Illumina Cat# 20020459

Deposited data

v12.8 CNS Tumor Reference

Dataset (raw IDAT files and metadata)

GHGA GHGA: GHGAS89861553411214;

https://data.ghga.de/browse?q=GHGAS89861553411214

Software and algorithms

MNP Classifier Training Code this paper https://github.com/mwsill/mnp_training

R The R Project for

Statistical Computing

v4.3.3; https://www.r-project.org/

minfi R package Aryee et al.54 v1.21.4; Bioconductor: https://bioconductor.org/

packages/minfi; RRID: SCR_012830

limma R package Bioconductor v3.30.11; https://bioconductor.org/packages/limma;

RRID: SCR_010943

uwot R package CRAN v0.2.3; https://cran.r-project.org/package=uwot

randomForest R package CRAN v4.7–1.2; https://cran.r-project.org/package=randomForest;

RRID: SCR_015718

glmnet R package CRAN v4.1-8; https://cran.r-project.org/package=glmnet; RRID: SCR_015505

mltest R package CRAN v1.0.1; https://cran.r-project.org/package=mltest

rms R package CRAN v6.8-2; https://cran.r-project.org/package=rms; RRID: SCR_023242

pROC R package CRAN v1.18.5; https://cran.r-project.org/package=pROC; RRID: SCR_24286
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into a combined dataset by selecting the intersection of probes present on both arrays. Each sample was individually normalized by

performing a background correction (shifting the 5th percentile of negative control probe intensities to 0) and a dye-bias correction

(scaling of the mean of normalization control probe intensities to 10,000) for both color channels. Subsequently, a correction for the

type of material (FFPE/frozen) and array type (450k/EPIC(v2)) was performed by fitting univariable linear models to the log2-trans-

formed intensity values (removeBatchEffect function in the limma package version 3.30.11). The methylated and unmethylated

signals were corrected individually. Beta-values were calculated from the retransformed intensities using an offset of 100 (as recom-

mended by Illumina).

CNV analysis

CNV analysis was performed as described previously6 (R-package conumee v1.42.0 and conumee2 v2.1 for EPICv2 arrays).

MGMT status prediction

The methylation status of the MGMT (Methylated-DNA–protein-cysteine methyltransferase) promoter was inferred as previously

described6 (R-package mgmtstp27 v0.7).

Non-linear dimension reduction

To perform unsupervised non-linear dimensionality reduction, the 10,000 CpG probes with the highest standard deviation were

selected, and a UMAP projection was calculated using the umap() function available in the R-package uwot v0.2.3.

Classifier training

Classifier training was performed as described in Capper et al.6 and Maros et al.43 First, we applied a permutation-based variable

importance measure (R-package randomForest v4.7–1.2) to select the 10,000 most informative CpG probes as features for the final

Random Forest (RF). Unbalanced class sample sizes were taken into account by down sampling each bootstrap sample to the mi-

nority class. Next, a ridge-penalized multinomial logistic-regression model (R-package glmnet v4.1-8) was fitted to calibrate the RF

output, mapping raw prediction scores to probability estimates. An optimal penalization parameter was chosen by a 10-fold cross-

validation. Combining classifier outputs with a logistic regression model is an ensemble strategy known as stacking.59

Classifier validation

To evaluate the classifier, a 5-fold nested cross-validation scheme generated out-of-sample RF scores that enabled us to fit and vali-

date the calibration models in each fold. To measure the performance of the classifier the following metrics and figures were gener-

ated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mltest v1.0.1), Confusion Matrix, multiclass

Log Loss, multiclass Brier Score, Calibration Plots (R-package rms v6.8-2). In addition, receiver operating characteristics (ROC)

curves and accompanying areas under the curve (AUC) are generated using R-package pROC v1.18.5.

RNA sequencing and fusion calling

RNA sequencing for the purpose of gene fusion calling was performed on aNextSeq 500 or NovaSeq 6000 instrument (Illumina) at the

Department of Neuropathology Heidelberg as previously described.60

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational analyses were performed in R version 4.3.3. To measure the performance of the classifier, the following metrics

were generated: Accuracy, Balanced Accuracy, F1, Matthews Correlation Coefficient (R-package mltest), Confusion Matrix, multi-

class Log Loss, multiclass Brier Score, and Calibration Plots (R-package rms). Receiver operating characteristics (ROC) curves and

accompanying areas under the curve (AUC) were generated using R-package pROC. Survival analyses in Figures 5 and S5were visu-

alized using Kaplan-Meier estimates for descriptive purposes. The number of patients (n) for each subgroup is provided in the cor-

responding figure legend.
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