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Abstract
Background:   Array-based DNA methylation profiling is the gold standard for central nervous system (CNS) tumor 
molecular classification, but requires over 100 ng input DNA from surgical tissue. Cell-free tumor DNA (cfDNA) in 
cerebrospinal fluid (CSF) offers an alternative for diagnosis and disease monitoring. This study aimed to test the 
utilization of enzymatic DNA methylation sequencing (EM-seq) methods to overcome input DNA limitations.
Methods:   We used the NEBNext EM-seq v2 kit on various amounts of cfDNA, as low as 0.1 ng, extracted from ar-
chival CSF samples of 10 patients with CNS tumors. Tumor classification was performed via MNP-Flex using CpG 
sites overlapping those on the MethylationEPIC array.
Results:   EM-seq provided sufficient genomic coverage for 10 and 1 ng input DNA samples to generate global 
DNA methylation profiles. Samples with 0.1 ng input showed lower coverage due to read duplication. Methylation 
levels for CpG sites with at least 5× coverage were highly correlated across various input DNA amounts, indicating 
that lower input cfDNA can still be used for tumor classification. The MNP-Flex classifier, trained on tissue DNA 
methylation data, successfully predicted CNS tumor types for 7 out of 10 CSF samples using EM-seq methylation 
data with only 1 ng of input cfDNA, consistent with diagnoses based on tissue MethylationEPIC classification and/
or histopathology. Additionally, we detected focal and arm-level copy number alterations previously identified via 
clinical cytogenetics of tumor tissue.
Conclusions:   This study demonstrated the feasibility of CNS tumor molecular classification based on CSF using 
the EM-seq approach, and establishes potential sample quality limitations for future studies.

Key Points

•	 EM-seq can profile methylation of cell-free DNA from cerebrospinal fluid (CSF) using 1–10 
ng of DNA input.

•	 DNA methylation profiles from the CSF were able to successfully classify 70% of tested 
samples.

•	 Copy number variations can be detected by EM-seq for treatment response/disease 
monitoring.

A feasibility study of enzymatic methylation 
sequencing of cell-free DNA from cerebrospinal fluid 
of pediatric central nervous system tumor patients for 
molecular classification  
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Molecular diagnosis of central nervous system (CNS) tu-
mors has rapidly advanced in the last few years, with tumor 
classification based on genome-wide DNA methylation 
profiling emerging as the gold standard for molecular clas-
sification.1,2 The “Molecular Neuro-Pathology” (MNP) DNA 
methylation-based tumor classification algorithm, devel-
oped by the German Cancer Research Center (DKFZ), has 
been adapted widely for clinical diagnosis. This platform 
has been trained and designed for use with DNA methyla-
tion data generated by the Illumina HumanMethylation450 
and MethylationEPIC BeadChip microarrays (hereafter, 
“MethylationEPIC”) from tumor tissue. However, suffi-
cient tumor sample from biopsy can be difficult to obtain 
for many tumor types, particularly within pediatric popu-
lations, due to surgically challenging tumor locations (ie, 
deep in the brain) and intratumoral heterogenicity, limiting 
the utility of the current approach to DNA methylation anal-
ysis of tumor tissue. Additionally, repeated biopsy of the 
tumor is often not practical for the molecular monitoring of 
a tumor’s response to ongoing treatment.

Compared to conventional tissue biopsies, liquid bi-
opsies have become an attractive alternative for DNA 
methylation-based tumor diagnosis. Liquid biopsies have 
multiple advantages over conventional tissue biopsy, in-
cluding (1) minimally invasive sampling procedure; (2) 
potentially less sampling bias for heterogeneous tumors; 
and (3) potential use for longitudinal monitoring of dis-
ease progression and treatment response.3–5 The majority 
of liquid biopsy assays have been developed using plasma 
or serum. More recently, groups have explored the possi-
bility of using cerebrospinal fluid (CSF), partly because it 
offers promising advantages for diagnosing CNS tumors, 
including glioma, ependymoma, and medulloblastoma.6–12 
First, studies have shown that patients with CNS tu-
mors harbor more cell-free tumor DNA in the CSF than 
in plasma—likely due to the presence of the blood–brain 
barrier13–15—suggesting that more informative molecular 
profiling can be performed on CSF samples. Second, CSF 
is akin to an ultrafiltrate and has fewer potential contamin-
ants and lower background cellularity that could interfere 
with clinical assays as compared to plasma.16,17 Third, since 
CSF sampling is a routine procedure in the management of 
many types of CNS tumors, no additional procedure would 
be required for developing new clinical assays. Despite 

these advantages, molecular analysis of CSF has yet to 
be widely adopted for clinical diagnosis of CNS tumors or 
tumor monitoring, mostly due to the limited quantity of 
cell-free DNA (cfDNA) obtained from CSF samples.

DNA methylation array data is the standard input for 
the current MNP classifier. However, the minimal DNA 
input amount (200 ng, as recommended by the manufac-
turer) is the biggest challenge for CSF samples, as pub-
lished studies usually report obtaining less than 50 ng of 
cfDNA from 200 to 500 mL CSF.6,12,14 Recently, Nanopore 
sequencing to detect DNA methylation status, followed by 
classification using a novel method (NanoDx), has been re-
ported using as low as 3–5 ng of cfDNA from CSF. Among 
129 samples, the classification success rate is 17.1% 
(n = 22) with NanoDx alone and 38.8% (n = 50) when com-
bined with copy number variant (CNV) analysis.18 A more 
accurate approach with lower DNA input requirements is 
needed to move forward with CSF-based tumor classifica-
tion development.

Enzymatic DNA methylation sequencing (EM-seq) 
technology has recently been developed, which detects 
5-methylcytosine (5mC) and 5-hydroxymethylcytosine 
(5hmC) using a 2-step enzymatic reaction19 instead of bi-
sulfite conversion. In the first step, 2 enzymes work in par-
allel to protect the methylated and hydroxymethylated 
cytosines. Ten-eleven translocation 2 (TET2) methylcytosine 
dioxygenase oxidizes 5mC and 5hmC, and T4-phage beta-
glucosyltransferase (T4-BGT) glucosylates 5hmC on DNA 
into products that cannot be deaminated in the second 
step. Apolipoprotein B mRNA editing enzyme catalytic 
subunit 3A (APOBEC3A) is used in the second step to con-
vert unmodified cytosines into uracils by deamination.19 
The resultant DNA is then sequenced using an Illumina 
system. Due to the mild reaction conditions of EM-seq, a 
lower amount of DNA input is needed, compared to con-
ventional bisulfite sequencing, making EM-seq a poten-
tial alternative technology for analyzing CSF samples. 
However, whether EM-seq technology can be used for CSF 
with a low cfDNA amount has not been reported.

To address this, in this feasibility study, we sought to test 
the performance of cfDNA methylation profiling on 10 CSF 
samples using a new version of the EM-seq kit developed 
by New England Biolabs (NEB), which is optimized for DNA 
input as low as 0.1 ng. We first tested the performance of 

Importance of the Study

Obtaining adequate biopsy of central nervous system 
(CNS) tumors for diagnosis, particularly in pediatric 
populations, can be challenging without significant 
morbidity and sampling bias in the case of mixed tu-
mors. Liquid biopsy of CNS tumors may provide a sup-
plemental or alternative method of obtaining tumor 
diagnosis, and its limited invasiveness provides the po-
tential to acquire additional useful disease-monitoring 
information during and after treatment. Given that the 
current gold standard for molecular classification of 
CNS tumors is based on DNA methylation profiling of 

tumor tissue, we sought to demonstrate the feasibility 
of using cell-free DNA from CSF for methylation pro-
filing. To achieve this, we combined enzymatic meth-
ylation sequencing to achieve sufficient coverage for 
DNA methylation profiling, and a methylation-platform-
agnostic classifier, MNP-Flex. We tested multiple input 
DNA amounts and established potential sample quality 
limits for accurate classification. These results repre-
sent important preliminary steps towards establishing 
DNA methylation profiling of the CSF for CNS tumor 
diagnosis.
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the kit for EM-seq analysis, followed by tumor classifica-
tion with varying DNA input, using 2 high-quality CSF sam-
ples. We then went on to further evaluate the performance 
of the technology by analyzing 8 additional samples with 
varying cfDNA quality to examine the limits of the system.

Materials and Methods

Patient Samples

Deidentified archival CSF samples were obtained from the 
Connecticut Children’s Medical Center (Connecticut Children’s) 
biorepository and the Children’s Brain Tumor Network (CBTN) 
biorepository. The study was approved by both Connecticut 
Children’s and The Jackson Laboratory (JAX) Institutional 
Review Boards. CSF samples were centrifuged for 10 min at 
a minimum of 400 g to remove cells, and supernatants were 
aliquoted and stored at −80°C prior to extraction.

Cell-Free DNA Extraction

Cell-free DNA was extracted from 500 to 1000 mL CSF 
using Quick-cfDNA Serum & Plasma Kit (Zymo Research) 
or QIAamp Circulating Nucleic Acid Kit (Qiagen) ac-
cording to manufacturers’ protocols. The resultant cfDNA 
was quantified by DNA high-sensitivity (HS) Qubit assay 
(Thermo Fisher Scientific) and Cell-free DNA ScreenTape 
assay (Agilent Technologies).

Enzymatic Methyl-Sequencing Library 
Preparation and Sequencing

Library preparation was performed using NEBNext 
Enzymatic Methyl-seq Kit v2 kit and Unique Dual Index 
Primer pairs (NEB) according to manufacturer’s protocol, 
without DNA fragmentation due to the small size of the 
cfDNA. Sheared unmethylated lambda DNA and meth-
ylated pUC19 DNA were added to each cfDNA sample as 
negative and positive controls, respectively. Control DNA 
(1:500) was used for the 0.1 ng input samples, while 1:50 
control DNA was used for 1 and 10 ng samples. A total of 
14, 11, and 8 amplification cycles were used for 0.1, 1, and 
>1 ng of DNA input, respectively. Libraries were stored at 
−20°C prior to sequencing. Library fragment size profiles 
were checked using High Sensitivity DNA ScreenTape 
D5000 on Agilent TapeStation 4200 system (Agilent). 
Quantification of libraries was performed using real-time 
qPCR ViiA7 (Thermo Fisher Scientific) with probes targeting 
the Illumina sequencing adaptor. The expected average 
size of DNA fragments was about 350–370 bp, which is 
equal to the sum of cfDNA and Illumina sequencing adap-
tors. Sequencing was performed on Illumina Novaseq X 
Plus platform, generating paired-end reads of 150 bp.

Tumor Classification Using DKFZ’s MNP-Flex 
Classifier

DNA methylation sequencing data was processed using 
the nf-core/methylseq20 Nextflow pipeline (version 2.4.0, 
https://nf-co.re/methylseq/2.4.0) for quality control, adapter 

trimming, mapping, deduplication, and site-specific meth-
ylation calling (options: -profile “singularity,” --aligner 
“bismark,” --genome “GRCh38,” --em_seq). The resulting 
coverage (.cov.gz) files from bismark21 (version 0.24.0) 
were used to calculate beta values, which were subsetted 
to only include CpG sites overlapping with the Infinium 
MethylationEPIC array probe sites using bedtools22 (ver-
sion 2.26.0) “intersect” function. Subsequently, coverage 
was calculated from the total number of methylated and 
unmethylated reads corresponding to each site, prior to 
classification using the platform-agnostic MNP-Flex clas-
sifier (as well as the prior MNPv12.8 classifier, using beta 
values of CpG sites corresponding to the MethylationEPIC 
array probe sites with missing values imputed using 
KNNimpute).2,23,24

Detection of Tumor-Specific Copy Number 
Variants Using cfDNA

Mapped, deduplicated reads from the methylseq pipe-
line were used for copy number variation analysis using 
CNVpytor (https://github.com/abyzovlab/CNVpytor),25 
which calculates CNVs using normalized sequencing read 
depth. Relevant genes were identified for each sample 
using patient-specific primary tumor CNVs called by clin-
ical cytogenetics (Supplementary Table 1), where available. 
Plots were made using different read binning sizes (1k bp, 
10k bp, or 100k bp) depending on the size of the gene body.

Validation of Known CNVs Using Droplet Digital 
Polymerase Chain Reaction

cfDNA was extracted with the Quick-cfDNA Serum & 
Plasma Kit (Zymo). Reaction mix, including 7.8 mL of 
cfDNA, 11 mL of Supermix for probes (No dUTP) (Bio-Rad 
Laboratories), 1.1 mL 20× target primer/probe (Bio-Rad 
Laboratories), 1.1 mL 20× reference primer/probe (Bio-
Rad Laboratories), and 5 U of the appropriate restriction 
enzyme (NEB), was added to each well of a droplet digital 
polymerase chain reaction (ddPCR) plate. The 96-well plate 
was then heat sealed and run on the Automated Droplet 
Generator with Droplet Generation Oil for Probes (Bio-Rad 
Laboratories) following manufacturer’s instructions. After 
droplet generation, the new 96-well plate was heat sealed 
for PCR (10 min at 95°C, 40 cycles of 94°C for 30 s, and 
60°C for 1 min, then 98°C for 10 min and cooling to 4°C). 
Droplets, after cycling, were analyzed using the QX200 
Droplet Reader and the QuantaSoft software (Bio-Rad 
Laboratories). Copy number was calculated by the instru-
ment software with the target gene copies normalized to 
the reference gene RPP30.

Results:

Extraction and EM-seq Analysis With Various 
DNA Input Amounts of cfDNA From CSF

As a recent development of the EM-seq technology, a 
new version of NEBNext Enzymatic Methyl-seq Kit was 
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developed for low DNA input as low as 0.1 ng. To test if 
EM-seq analysis on cfDNA extracted from CSF samples 
can be used for tumor classification, we extracted cfDNA 
from archival CSF samples and performed EM-seq. The 
schematic diagram of the workflow is shown in Figure 1A.

To test the performance of the EM-seq kit with varying 
inputs of DNA, we obtained 2 deidentified archival CSF 
samples from Connecticut Children’s biorepository. The 2 
samples chosen had detailed histopathology reports and 
DNA methylation classification using the MNP v12 classi-
fier based on tumor tissue DNA. The first sample (HGG47) 
is from an 11-year-old female patient diagnosed with 
pediatric-type high-grade glioma with wildtype H3 and 
IDH. The second sample (MB11) is from a 7-year-old female 
patient diagnosed with classic variant medulloblastoma, 
WHO grade 4, non-WNT/non-SHH subtype with wildtype 
TP53. cfDNA was extracted from 1000 and 500 mL of CSF 
of HGG47 and MB11, respectively. The yield of total DNA, as 
measured by DNA HS Qubit assay, was 13.50 ng (HGG47) 
and 10.17 ng (MB11). The cell-free DNA ScreenTape assay 
showed that the average size of the cfDNA (ie, 50–700 bp) 
was 203 bp and 212 bp for HGG47 and MB11, respectively, 
and no appreciable high molecular mass DNA (>700 bp) 
contamination was found for either sample (Figure 1B).

Next, we performed EM-seq conversion and library prep-
aration using the EM-seq v2 kit according to manufacturer’s 
protocols. To test the performance of EM-seq with various 
DNA input amounts, EM-seq libraries with 3 different 
amounts of cfDNA were made for each sample (Table 1). 
Library preparation metrics across all input DNA amounts 
and technical replicates, including library yield and frag-
ment size, are shown in Table 1. In general, higher DNA 
input generated higher yield, with similar fragment lengths 
across all input amounts of cfDNA. All library preparations 
generated enough materials for Illumina sequencing.

Sequencing was performed using the Illumina Novaseq 
X Plus platform, generating paired-end reads of 150 bp. 
Overall, the sequencing analysis generated an average of 
828 mappable million reads per sample (ranging from 541 
to 1006 million reads per sample) with an average 85.6% 
(standard deviation [SD] = 2.5%) of reads mappable to the 
human genome (Table 1). The percentages of duplicated 
reads are low at 9.8% and 15.3% for 10 ng (HGG47) and 
8.8 ng (MB11) libraries, respectively. However, the per-
centages of duplicated reads increased with decreasing 
DNA input. For example, the average percentages of du-
plicated reads of 0.1 ng libraries are 92.0% (SD = 4.5%). 
Mean genomic coverage was impacted by this variation 
in duplicated reads, the mean genomic coverage of the 10 
ng (HGG47) and 8.8 ng (MB11) libraries at 43.3’ and 53.8’, 
respectively. In contrast, 0.1 ng libraries only achieved a 
mean genomic coverage of 6.3’ (SD = 3.5’) due to their high 
level of duplication.

To examine the efficiency of the EM-seq conversion, 
sheared unmethylated lambda DNA and methylated 
pUC19 DNA were added to each sample according to 
manufacturer’s protocols. Oxidation of 5mC and 5hmC by 
TET2 and the glucosylation of 5hmC by T4-BGT protected 
the products from deamination by APOBEC3A and, as a 
result, only unmethylated cytosines will be deaminated to 
uracil. A high percentage of methylation found on meth-
ylated pUC19 DNA and a low percentage of methylation 

found on unmethylated lambda DNA indicated an efficient 
EM-seq conversion. The overall percentage of methylation 
on methylated pUC19 DNA and unmethylated Lambda DNA 
is 96.8% ± 0.2% (mean ± SD) and 0.9% ± 0.4%, respectively 
(Figure 1C). We also examined methylation of cytosines in 
different genomic contexts, as methylation of cytosines is 
largely exclusive to CpG dinucleotides in mammalian cells, 
and should be very low in other genomic contexts (CHG 
or CHH, where H represents A, C, or T nucleotides).26 The 
average methylation in the CpG context was detected at 
69.7% ± 1.6%. As expected, the percentages of methylation 
in the CHG and CHH sites were low, ranging from 0.4% to 
1.8% (Figure 1D). No significant difference in DNA methyl-
ation within a genomic context was observed across the 
various DNA inputs. The results indicated a high efficiency 
of expected EM-seq conversion, and that the data could be 
used for downstream analysis.

To further evaluate the consistency of results from 
sequencing, we compared the methylation values of CpG 
sites using different amounts of cfDNA. The correlation 
between methylation values of CpG sites with at least 10× 
coverage across all input cfDNA sequencing runs within a 
single sample (either HGG47 or MB11) is shown in Figure 
2. As 1 and 10 ng inputs allowed for higher coverage due 
to lower duplication rates, the methylation values within 
those data are highly correlated (Pearson r = 0.94). More 
marginal coverage in the 0.1 ng input DNA data results in 
lower correlation with the methylation levels determined 
from high-input sample runs, although overall there is 
still high correlation in sites that have at least 10’ coverage 
across input amounts (Pearson r ≥ 0.85). This effect is more 
pronounced with equivalent plots using a 5’ coverage 
cutoff (Supplementary Figure 1), where the DNA methyla-
tion correlation in the higher input 1 and 10 ng sequencing 
runs is markedly higher than with the 0.1 ng samples. 
This indicates that overall, DNA methylation sequencing 
data obtained from the 0.1 ng samples are reliable, but 
due to high levels of read duplication, insufficient average 
coverage limits its utility for tumor classification using a 
genome-wide approach.

Tumor DNA Methylation Classification Using 
Data Generated From EM-seq

Beta values were calculated for each CpG site from the 
ratio of methylated to total reads. This beta value matrix 
was limited to sites overlapping with the MethylationEPIC 
array probes used for classification by the MNP-Flex classi-
fier2,23 and used as an input to the classifier in order to pre-
dict CNS tumor types for each sample at the superfamily, 
family, class, and subclass level. MNP-Flex was developed 
using the most updated training dataset and serves as a 
platform-agnostic method for CNS tumor classification 
that accepts DNA methylation sequencing data.

Tumor classification results with prediction scores of 
HGG47 and MB11 using CSF cfDNA are shown in Table 2, 
along with the gold-standard, array-based classification 
performed using the MethylationEPIC array with tumor 
tissue. For the HGG47 sample, classifications were con-
sistent at all levels across different DNA input amounts, 
including superfamily (pediatric-type diffuse high-grade 
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Figure 1.  Overview of EM-seq analysis of CSF samples. (A) Schematic workflow of CSF sample preparation, sequencing, and analysis. Prepared 
using the NIAID NIH BIOART Source (https://bioart.niaid.nih.gov/). (B) DNA fragment size profile of extracted cfDNA from HGG47 and MB11 sam-
ples by TapeStation. Vertical blue lines represent the size range of cfDNA within the CSF (50–700 bp). (C) Average methylation values for spike-in 
controls for varying input DNA amounts in both HGG47 and MB11 samples. pUC19 (methylated) control shown in black, lambda (unmethylated) 
DNA shown in white. (D) Average methylation values for different cytosine contexts (CpG, CHG, CHH) for varying input DNA amounts in both 
HGG47 and MB11 samples.
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glioma), family (H3-wildtype and IDH-wildtype), class 
(subtype A&B (novel)), and subclass (subtype B). The pre-
diction scores decreased as the cfDNA input decreased, 
likely due to a reduction in coverage as input cfDNA de-
creased. Compared to the classification by tissue, the re-
sult from CSF agreed with that from tissue, except at the 
subclass level, where the tissue classified the sample as 
“subtype A” with high confidence. The prediction scores 
of classifications by CSF were marginal at the subclass 
level, and when using 0.1 ng of input cfDNA. We noted 
that, using the MNP v12.8 classifier with imputed missing 
values (KNNimpute24), the classification of this sample was 
correct to the subclass level, with high confidence (10 ng 
input, classification score = 0.99, Supplementary Table 2). 
In addition, the cfDNA methylation-based classification 
result is consistent with the histopathological diagnosis 

of the tumor as a pediatric-type high-grade glioma with 
wildtype H3 and IDH.

For MB11, CSF cfDNA classification shows superfamily: 
“medulloblastoma” family: “non-WNT/non-SHH activated 
subtype” class: “group 4” and subclass: “group 4, subclass 
VIII” (Table 2). The classifications were constant at all levels 
across different DNA input amounts. The prediction scores 
decreased slightly from 0.995 for 8.8 ng input to 0.866–
0.951 for 0.1 ng input at the subclass level. Compared to 
the tumor classification by tissue, the results from CSF 
classification agreed at all levels with high confidence. The 
DNA methylation-based classification was also consistent 
with the histopathological report of the tumor as a non-
WNT/non-SHH subtype medulloblastoma.

Taken together, based on these 2 samples, we demon-
strated that EM-seq analysis (using NEBNext EM-seq kit 

Table 1.  Library preparation and sequencing metrics of EM-seq libraries.

Case ID Time of CSF 
acquisition

DNA 
input (ng)

Library yield 
measured by 
qPCR (nM)

Average size of li-
brary fragment (bp)

Percent 
Mapped

Mapped reads 
(millions)

Percent 
duplicated

Mean genomic 
coverage (X)

HGG47 Pre-treatment  10 23.38 346 89.3 603 9.8 43.3

1 7.15 377 88.2 541 43.1 24.6

8.26 359 88.8 624 45.4 27.2

0.1 6.11 352 82.5 976 95.4 3.5

6.94 365 83.9 1006 96.2 3.1

MB11 Pre-treatment 8.8 8.09 379 85.4 794 15.3 53.8

1 9.08 352 84.2 919 43.2 40.2

0.1 8.52 331 84.4 1005 87.1 10.2

7.3 372 84 985 89.2 8.4
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Figure 2.  Pearson correlation between methylation values of CpG sites with at least 10× coverage across all input cfDNA values for (A) HGG47 
and (B) MB11.
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v2) of CSF cfDNA down to 1 ng captures the tumor methyl-
ation profile. The generated data resulted in correct tumor 
classification by CSF using the MNP-Flex algorithm, with 
only minor discrepancies at the subclass level for HGG47, 
compared to the DNA methylation-based classification by 
tissue and the histopathological reports.

EM-seq Analysis of Additional CSF Samples of 
CNS Tumor Samples

A large variation in quantity and quality of cfDNA ex-
tracted from CSF was observed by us and by other groups 
previously.6,12,14 The 2 samples with successful classifi-
cation described above had high-quality cfDNA. To test 

the feasibility of EM-seq analysis using CSF cfDNA with 
varied quality and cfDNA concentration, we used an ad-
ditional eight CSF samples: 3 medulloblastoma, 1 pleo-
morphic xanthoastrocytoma, 1 germinoma, and 2 atypical 
teratoid rhabdoid tumor (ATRT). The cfDNA was extracted 
and measured by both DNA HS Qubit and Cell-free DNA 
ScreenTape assays following the same protocol used 
for the previous samples. The yield of cfDNA extrac-
tion by Qubit and determination of DNA size content by 
ScreenTape are listed in Supplementary Table 3. MB26, 
MB32, and G05 were included because of a low cfDNA 
yield extracted from CSF. The cfDNA yield of MB26 was 
3.78 ng, while the yields of MB32 and G05 were too low 
to be detected by Qubit assay. In contrast, although high 
DNA yield was obtained for the samples ATRT30, ATRT52c, 

Table 2.  Tumor classification based on CSF (MNP-Flex) and tissue (MNP v.12) of HGG47 and MB11, across varied amounts of input cfDNA from CSF. 

Case ID Sample 
type

DNA 
input 
(ng)

Methylation super-
family

Methylation family Methylation class Methylation subclass

HGG47 CSF 10.0 Pediatric-type dif-
fuse high-grade 
gliomas [0.628]

Diffuse pediatric-type 
high-grade glioma, 
H3-wildtype and IDH-
wildtype [0.614]

Diffuse pediatric-type high-
grade glioma, H3 wildtype 
and IDH wild type, Subtype 
A&B (novel) [0.566]

Diffuse pediatric-type 
high-grade glioma, H3 
wildtype and IDH wild 
type, Subtype B [0.336]

HGG47 CSF 1.0 Pediatric-type dif-
fuse high-grade 
gliomas [0.503]

Diffuse pediatric-type 
high-grade glioma, 
H3-wildtype and IDH-
wildtype [0.488]

Diffuse pediatric-type high-
grade glioma, H3 wildtype 
and IDH wild type, Subtype 
A&B (novel) [0.436]

Diffuse pediatric-type 
high-grade glioma, H3 
wildtype and IDH wild 
type, Subtype B [0.227]

HGG47 CSF 1.0 Pediatric-type dif-
fuse high-grade 
gliomas [0.465]

Diffuse pediatric-type 
high-grade glioma, 
H3-wildtype and IDH-
wildtype [0.447]

Diffuse pediatric-type high-
grade glioma, H3 wildtype 
and IDH wild type, Subtype 
A&B (novel) [0.372]

Diffuse pediatric-type 
high-grade glioma, H3 
wildtype and IDH wild 
type, Subtype B [0.212]

HGG47 CSF 0.1 Pediatric-type dif-
fuse high-grade 
gliomas [0.290]

Diffuse pediatric-type 
high-grade glioma, 
H3-wildtype and IDH-
wildtype [0.267]

Diffuse pediatric-type high-
grade glioma, H3 wildtype 
and IDH wild type, Subtype 
A&B (novel) [0.194]

Diffuse pediatric-type 
high-grade glioma, H3 
wildtype and IDH wild 
type, Subtype B [0.165]

HGG47 CSF 0.1 Pediatric-type dif-
fuse high-grade 
gliomas [0.219]

Diffuse pediatric-type 
high-grade glioma, 
H3-wildtype and IDH-
wildtype [0.182]

Diffuse pediatric-type high-
grade glioma, H3 wildtype 
and IDH wild type, Subtype 
A&B (novel) [0.114]

Diffuse pediatric-type 
high-grade glioma, H3 
wildtype and IDH wild 
type, Subtype B [0.090]

HGG47 Tissue N/A Pediatric-type dif-
fuse high-grade 
gliomas [0.999]

Diffuse pediatric-type 
high-grade glioma, 
H3-wildtype and IDH-
wildtype [0.999]

Diffuse pediatric-type high-
grade glioma, H3 wildtype 
and IDH wild type, Subtype 
A&B (novel) [0.999]

Diffuse pediatric-type 
high-grade glioma, H3 
wildtype and IDH wild 
type, Subtype A [0.930]

MB11 CSF 8.8 Medulloblastoma 
[0.996]

medulloblastoma 
non-WNT/non-SHH 
activated [0.996]

medulloblastoma Group 4 
[0.996]

Medulloblastoma 
Group 4, subclass VIII 
[0.995]

MB11 CSF 1.0 Medulloblastoma 
[0.997]

medulloblastoma 
non-WNT/non-SHH 
activated [0.997]

medulloblastoma Group 4 
[0.996]

Medulloblastoma 
Group 4, subclass VIII 
[0.996]

MB11 CSF 0.1 Medulloblastoma 
[0.960]

medulloblastoma 
non-WNT/non-SHH 
activated [0.958]

medulloblastoma Group 4 
[0.956]

Medulloblastoma 
Group 4, subclass VIII 
[0.951]

MB11 CSF 0.1 Medulloblastoma 
[0.888]

medulloblastoma 
non-WNT/non-SHH 
activated [0.883]

medulloblastoma Group 
4 [0.876]

Medulloblastoma 
Group 4, subclass VIII 
[0.866]

MB11 Tissue N/A Medulloblastoma 
[0.999]

Medulloblastoma 
non-WNT/non-SHH 
activated [0.999]

Medulloblastoma Group 4 
[0.999]

Medulloblastoma 
Group 4, subclass VIII 
[0.999]

Abbreviations: CSF, cerebrospinal fluid; MNP, Molecular Neuro-Pathology.
Prediction score by MNP shown in brackets.
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MB45, and HGG49, additional peaks were detected in the 
fragment size profiles. Both ATRT samples, as well as MB45 
and HGG49, had fragment peaks at ~200 bp (ie, cfDNA) and 
additional peaks between 400 and 700 bp. ATRT30 and 
ATRT52c also had evidence of cellular DNA contamination, 
with peaks >700 bp. Finally, MB51 was included because 
it was a low-yield sample without any visible peak in the 
fragment size profiles. The TapeStation fragment size pro-
files of all samples are shown in Supplementary Figure 2.

Since 1 ng DNA input for EM-seq analysis generated 
data for correct tumor classification with prediction scores 
>0.5 in the first 2 samples, which is considered “sugges-
tive” by the Childhood Cancer Data Initiative’s Molecular 
Characterization Initiative, the EM-seq conversion and li-
brary preparation of 8 additional selected samples were 
performed as previously described with 1 ng DNA input, 
except MB32 and G05. The maximum volume allowable for 
EM-seq library preparation (45 mL) was used for MB32 and 
G05 samples, which were equal to 1.22 and 1.50 ng, respec-
tively, based on the ScreenTape analysis result. Post-library 
preparation QC was done, showing that the EM-seq li-
braries yield ranged from 0.72 to 13.42 nM. The sequencing 
metrics of the 8 libraries are listed in Supplementary Table 
4.

The EM-seq data were subjected to DNA methylation-
based classification using MNP-Flex, and the results 
are shown in Table 3 (with MNP12.8 results shown in 
Supplementary Table 5). The classification by cfDNA meth-
ylation was compared to the methylation classification of 
the tissue, where available, or the histopathologic diag-
nosis (images shown in Supplementary Figure 3). Among 
low-yield samples, all 3 samples (MB26, MB32, and G05) 
are correctly classified (scores = 0.961, 0.791, 0.914, respec-
tively) at the family level. Unfortunately, we cannot con-
firm the class and subclass of these samples due to lack of 
DNA methylation-based classification by tissue. The score 
for MB32 at the class and subclass levels was more mar-
ginal. Based on the histopathological report of MB32, this 
is a recurrent medulloblastoma with more diffused severe 
anaplasia (>50%), comparing to the initial diagnosis, sug-
gesting that this recurrent tumor may be altered from the 
original tumor and may not fit cleanly into existing tumor 
classes and subclasses. Both ATRT tumors were classified 
correctly, with classifications down to the subclass level, 
which match the classification based on tissue using MNP 
v12 classifier.

The remaining samples, MB45, HGG49, and MB51, were 
classified with low prediction scores (<0.49), which indi-
cates the tumor type cannot be determined. MB45 repre-
sents a tumor with a difficult original diagnosis, presenting 
with 2 separate tumors which were diagnosed at the same 
time, with 1 tumor found in the posterior fossa and the 
other in the pineal region. The unusual nature of this tumor 
may have complicated the cfDNA profile as compared to 
the tissue, as it may represent a mixture of DNA from both 
tumor sites. HGG49 tissue classified as a pleomorphic 
xanthoastrocytoma, which is a rare subtype of astrocytic 
glioma. Although diagnosis based on cfDNA using MNP-
Flex was correct, the score was extremely low at all classi-
fication levels. Finally, we found no visible cfDNA peak on 
the TapeStation profile of MB51, which likely prevented us 
from obtaining any classification.

Taken together with HGG47 and MB11, we successfully 
performed EM-seq and MNP-Flex classification on ten CSF 
samples with different CNS tumor diagnosis. Seven out 
of 10 (70%) samples showed correct classification by the 
MNP-Flex algorithm. Our present study demonstrates the 
feasibility of tumor classification based on 1 ng of cfDNA 
extracted from CSF using EM-seq technology.

Copy Number Variation Detectable in CSF cfDNA 
Reveals Tumor-Specific Alterations

The MethylationEPIC array data are utilized not only for 
elucidating genome-wide DNA methylation patterns but 
also for estimating chromosomal copy number changes. 
This dual application enhances our understanding of tu-
mors at different molecular levels, thereby facilitating 
diagnoses and disease monitoring. To evaluate whether 
similar copy number estimations can be achieved using 
EM-seq data, we investigated the detectability of CNVs in 
CSF cfDNA found in the original tumor tissue. We utilized 
CNVpytor to determine copy number using normalized 
read depth.25 Chromosomal arm-level copy number alter-
ations were determined for each sample, and compared 
with those originally found within the tumor tissue using 
CNV microarray assay (OncoScan, Affymetrix),27 where 
available. Two illustrative examples are shown in Figure 3, 
with 5/6 (MB26, Figure 3A) and 2/2 (MB11, Figure 3B) chro-
mosomal arm-level copy number alterations detectable in 
tumor tissue also found within the CSF. With MB26, there 
was a suggestion of 3q loss even though the results did 
not reach statistical significance. In additional samples, 
by reducing the read depth binning to 10k bp, we were 
also able to detect more focal alterations that were previ-
ously found in the original tumor tissue, including dele-
tions of CDKN2A/B in HGG49 and deletions of TP53, RB, 
and SMAD4 in HGG47 (Supplementary Figure 4). Copy 
number alterations detected using bins of 1k bp–100k bp 
for all tested samples can be found in Supplementary Table 
6, with genome-wide copy number plots of all samples in 
Supplementary Figure 5. Interestingly, the large-scale copy 
number alterations found in tissue for MB51, which was 
not classified correctly using CSF, were also not present 
in the copy number profile. This provides further evidence 
that insufficient tumor DNA was available in the CSF to 
perform classification. For the other misclassified samples, 
HGG49 and MB45, either no copy number data were avail-
able (HGG49), or copy number alterations were either not 
found in 1 of the 2 tumors from that patient (MB45), lim-
iting our ability to explore this further.

Discussion:

Correct diagnosis, including subclassification, of CNS tu-
mors is crucial to accurately stratify patients for accurate 
prognosis and therapy in order to optimize patient out-
comes. Imaging of the tumor and histopathological anal-
ysis of surgical biopsies have been the most common 
practices for diagnosis for many decades. However, these 
methods alone could lead to potentially inconclusive di-
agnosis, particularly if there is limited tumor sample for 
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evaluation. In 2018, Capper et al. reported that DNA meth-
ylation analysis from tumor tissue could be used for tumor 
classification and improving the diagnosis for pediatric 
and adult CNS tumors.2 Since then, tissue DNA methyl-
ation classification has become a gold standard for CNS 
tumor molecular diagnosis and has been incorporated into 
the new WHO classification CNS5 for some pediatric CNS 
tumors.28 However, in some CNS tumor cases, sufficient 

tissue biopsy for classification is not feasible due to ina-
bility to obtain adequate tumor tissue, related to tumor size 
and/or close proximity to vital brain structures. In these 
situations, liquid biopsy becomes an attractive alternative 
approach for diagnosis and longitudinal monitoring of dis-
ease. In this study, we demonstrated the feasibility of using 
EM-seq analysis for tumor classification with as low as 1 
ng of input cfDNA extracted from CSF samples.

Table 3.  Comparison between histopathological/tissue methylation-based diagnosis and tumor classification by EM-seq analysis using CSF. 

Case ID Tissue diag-
nosis source

Tissue diagnosis Predicted classification by CSF methylation

MB26 Tissue meth-
ylation (MNP 
v12)

Medulloblastoma [0.996]
Medulloblastoma non-WNT/non-
SHH activated [0.996]
Medulloblastoma Group 4 [0.963]
Medulloblastoma Group 4, subclass 
V [0.909]

Medulloblastoma [0.963]
Medulloblastoma, non-WNT/non-SHH activated [0.961]
Medulloblastoma Group 4 [0.941]
Medulloblastoma Group 4, Subclass V [0.919]

MB32 Tissue meth-
ylation (MNP 
v12)

Medulloblastoma [0.999]
Medulloblastoma, SHH-activated 
[0.999]
Medulloblastoma, SHH-activated, 
subtype 3 [0.704]
Medulloblastoma, SHH-activated, 
subtype 3 [0.704]

Medulloblastoma [0.805]
Medulloblastoma, SHH activated [0.791]
Medulloblastoma, SHH-activated, subtype 4 [0.425]
Medulloblastoma, SHH-activated, subtype 4 [0.425]

G05 Histopa-
thology

Germinoma
KIT+, OCT4+, CD117+
PLAP-

Germ cell tumors [0.914]
Germ cell tumors of the CNS [0.914]
Germinoma [0.914]
Germinoma, subtype KIT mutant (novel) [0.913]

ATRT30 Tissue meth-
ylation (MNP 
v12)

Other CNS embryonal tumors 
[0.942]
Atypical teratoid rhabdoid tumor 
[0.937]
Atypical teratoid rhabdoid tumor, 
MYC activated [0.877]
Atypical teratoid rhabdoid tumor, 
MYC activated [0.877]

Other CNS embryonal tumors [0.671]
Atypical teratoid rhabdoid tumor [0.651]
Atypical teratoid rhabdoid tumor, MYC activated [0.582]
Atypical teratoid rhabdoid tumor, MYC activated [0.582]

ATRT52c Tissue meth-
ylation (MNP 
v12)

Other CNS embryonal tumors 
[1.000]
Atypical teratoid rhabdoid tumor 
[1.000]
Atypical teratoid rhabdoid tumor, 
SHH activated [0.995]
Atypical teratoid rhabdoid tumor, 
SHH activated [0.995]

Other CNS embryonal tumors [0.904]
Atypical teratoid rhabdoid tumor [0.897]
Atypical teratoid rhabdoid tumor, SHH activated [0.885]
Atypical teratoid rhabdoid tumor, SHH activated [0.885]

MB45 Tissue meth-
ylation (MNP 
v12)

Medulloblastoma [0.998]
Medulloblastoma, SHH-activated 
[0.998]
Medulloblastoma, SHH-activated, 
subtype 1 [0.655]
Medulloblastoma, SHH-activated, 
subtype 1 [0.655]

Low-grade glial/glioneuronal/neuroepithelial tumors 
[0.122]
Subependymal giant cell astrocytoma [0.061]
Subependymal giant cell astrocytoma [0.061]
Subependymal giant cell astrocytoma [0.061]

HGG49 Histopa-
thology/tissue 
methylation 
(MNP v12)

High-grade glioma
H-3 wildtype, IDH-wildtype,
BRAF V600E mutation, homozygous 
CDKN2A deletion
Anaplastic pleomorphic 
xanthoastrocytoma (methylation)

Low-grade glial/glioneural/neuroepithelial tumors 
[0.140]
Pleomorphic xanthoastrocytoma(-like) [0.088]
Pleomorphic xanthoastrocytoma(-like) [0.088]
Pleomorphic xanthoastrocytoma [0.088]

MB51 Tissue meth-
ylation (St. 
Jude classi-
fier)

Methylation family: 
Medulloblastoma Group 3/4 [0.99]
Methylation class: Medulloblastoma 
Group 3/4, subgroup 8 [0.99]

Ependymal tumors [0.102]
Meningioma [0.0987]
Meningioma, benign [0.083]
Meningioma, subclass benign 1 [0.055]

Abbreviations: CSF, cerebrospinal fluid; MNP, Molecular Neuro-Pathology.
Methylation classification results reported for (in order): superfamily, family, class, and subclass. Prediction score by MNP shown in brackets.
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For tumor classification, data of 10 ng samples with 
mean genomic coverage of 43.3’ and 53.8’ resulted in 
correct classification for both high-grade glioma and 
medulloblastoma. Although the mean genomic coverage 
decreased to 24.6 and 40.2’ in the 1 ng samples, correct 
classification was still achievable. The current version of 
MNP-Flex relies on 100 000 variant CpG sites. The number 
of sites with no coverage is small, representing under 
1% of the data. So, the absolute degree of missing data 
is low, and the effect on the classification should be min-
imal. However, 0.1 ng samples with lower mean genomic 
coverage (3.1–10.2’) resulted in lower overall prediction 
scores. To address this limitation in the future, a targeted 

sequencing approach to increase coverage of relevant CpG 
sites may be explored, which could increase the possibility 
of using extremely low-input cfDNA for classification.

In addition, in the test of low-quality and/or low-yield 
cfDNA samples, correct tumor classification was found 
with 7/10 samples. For the 3 samples with poor results, 
there were additional factors that affected classification. 
As discussed previously, for 1 sample (MB45), the cfDNA 
within the CSF may have been a mixture from 2 tumors 
in the same patient, unusual presentation for this tumor 
type as 1 tumor arose in the pineal region. Although both 
of these tumors had the same tissue DNA methylation-
based molecular diagnosis, they presented with different 
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Figure 3.  Arm-level copy number alterations detected in cfDNA from CSF. Copy number calculated from read depth across 100kbp bins using 
CNVpytor. For each sample, (A) MB26 and (B) MB11, arm-level copy number alterations listed were detected via tumor chromosomal micro-
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copy number alterations using the same assay. For an-
other (HGG49), despite correct classification with high 
confidence using the tissue, the CSF classification had an 
extremely low score. Without copy number alterations de-
tected in the original tumor by clinical array, we are unsure 
if sufficient tumor cfDNA was present to make a diagnosis. 
An additional sample with poor classification (MB51) had 
no visible cfDNA peak and was unable to be classified. We 
noted that this sample was classified with a low score as 
an ependymal tumor. This finding may suggest that the 
input DNA predominantly came from choroid plexus cells 
of ependymal origin, another potential source of nontumor 
DNA due to their role in the brain–CSF interface. Our re-
sults suggest that high-quality cfDNA, including the pres-
ence of monomeric and dimeric cfDNA (200–400 bp), is 
critical for correct tumor classification. Whether the obser-
vation is generalizable to additional tumor types should be 
investigated in future studies.

As a feasibility study, we aimed to demonstrate the 
success of EM-seq analysis using cfDNA extracted from 
CSF. We recognize some limitations of this study to con-
firm that EM-seq analysis on CSF can be used for classi-
fication of a broad range of CNS tumor types. First, the 
number of samples and tumor types used in this study is 
too small to reach any sort of comparative statistical power 
to the tissue-based classifier. To address this, a larger co-
hort study, including a variety of CNS tumor diagnoses, is 
currently being planned. Second, no classification algo-
rithm trained on CSF cfDNA methylation data is available. 
The current classification algorithm has been developed 
based on the MethylationEPIC data generated from tissue. 
Whether this contributed to a lower prediction score for 
some samples is uncertain. A pairwise comparison be-
tween classification by tissue and CSF across a panel of 
CNS tumor types should be performed to determine 
whether the current classification algorithm for tissue is 
robust enough for data from cfDNA extracted from CSF, 
or if a CSF-specific algorithm is required to correctly clas-
sify tumor types. Third, the CSF samples used in this study 
are archival materials from various biorepositories. The 
collection method and handling process were not strictly 
controlled and standardized. A prior study using a panel-
based sequencing approach in a large cohort found a sig-
nificant decrease in detectable cfDNA when less than 2 mL 
of CSF was used for extraction.29 A prospective study with 
controlled CSF volumes may allow us to determine the de-
tection limit relevant to genome-wide DNA methylation 
analysis. Whether the difference in collection methods and 
handling processes contributes to any variation in our re-
sults has to be investigated in a larger cohort study.

Currently, cfDNA extracted from plasma is another at-
tractive liquid biopsy analyte being explored for disease 
detection, classification, and longitudinal monitoring. 
However, CSF is an ultrafiltered body fluid as compared 
to plasma, and likely has a higher signal-to-noise ratio 
for tumor analytes as compared to plasma. In addition, 
it has been previously reported that the nucleic acids ex-
tracted from CSF are higher in concentration than those 
from plasma for patients with CNS tumors, likely due to 
the presence of blood–brain barrier.13–15 Due to the ease 
of obtaining blood samples from patients, the feasibility 
of EM-seq analysis on plasma sample should be further 
assessed for its diagnostic potential. Investigation using 

matched CSF and plasma with EM-seq technology should 
be performed in future studies.
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