001     309972
005     20260220120945.0
024 7 _ |a 10.1038/s43018-026-01114-5
|2 doi
024 7 _ |a pmid:41708895
|2 pmid
037 _ _ |a DKFZ-2026-00398
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Greenwald, Noah F
|0 0000-0002-7836-4379
|b 0
245 _ _ |a Temporal and spatial composition of the tumor microenvironment predicts response to immune checkpoint inhibition in metastatic TNBC.
260 _ _ |a London
|c 2026
|b Nature Research
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1771576747_3240617
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a epub
520 _ _ |a Immune checkpoint inhibition (ICI) benefits only a subset of patients with metastatic triple-negative breast cancer and determinants of response remain unclear. We assembled a longitudinal cohort of 103 female patients from the phase 2 TONIC trial, with samples spanning primary tumors, pretreatment metastases and on-treatment metastases during nivolumab therapy. We profiled 37 proteins in 270 tumors using highly multiplexed imaging and developed SpaceCat, an open-source pipeline that extracts more than 800 imaging features per sample, including cell density, diversity, spatial interactions and functional marker expression. Metastatic but not primary tumors contained features predictive of outcome. Spatial metrics such as immune diversity and T cell infiltration at tumor borders were most informative, while ratios of T cells to cancer cells and PDL1 on myeloid cells were also associated with response. Multivariate models stratified patients with the highest performance on treatment (area under the curve = 0.90). Bulk RNA-seq confirmed the predictive value of on-treatment samples. These findings highlight the value of longitudinal profiling to resolve evolving tumor microenvironment dynamics driving ICI response.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Nederlof, Iris
|0 0000-0001-7608-6515
|b 1
700 1 _ |a Sowers, Cameron
|b 2
700 1 _ |a Ding, Daisy Yi
|b 3
700 1 _ |a Park, Seongyeol
|0 0000-0002-9236-5853
|b 4
700 1 _ |a Kong, Alex
|b 5
700 1 _ |a Houlahan, Kathleen E
|0 0000-0002-2273-2099
|b 6
700 1 _ |a Varra, Sricharan Reddy
|0 0009-0000-5757-6818
|b 7
700 1 _ |a de Graaf, Manon
|b 8
700 1 _ |a Geurts, Veerle
|b 9
700 1 _ |a Liu, Candace C
|b 10
700 1 _ |a Ranek, Jolene S
|0 0000-0002-0701-0565
|b 11
700 1 _ |a Voorwerk, Leonie
|b 12
700 1 _ |a de Maaker, Michiel
|b 13
700 1 _ |a Kagel, Adam
|b 14
700 1 _ |a McCaffrey, Erin
|b 15
700 1 _ |a Khan, Aziz
|0 0000-0002-6459-6224
|b 16
700 1 _ |a Yeh, Christine Yiwen
|0 0000-0003-4217-8555
|b 17
700 1 _ |a Fullaway, Christine Camacho
|0 0000-0002-4924-591X
|b 18
700 1 _ |a Khair, Zumana
|b 19
700 1 _ |a Simon, Brennan G
|0 0000-0002-7255-2766
|b 20
700 1 _ |a Bai, Yunhao
|b 21
700 1 _ |a Piyadasa, Hadeesha
|b 22
700 1 _ |a Risom, Tyler
|b 23
700 1 _ |a Delmastro, Alea
|0 0000-0002-7959-3165
|b 24
700 1 _ |a Hartmann, Felix
|0 P:(DE-He78)5cbf51db82a42b08a814f47dbc9412ca
|b 25
|u dkfz
700 1 _ |a Mangiante, Lise
|0 0000-0001-8309-0950
|b 26
700 1 _ |a Sotomayor-Vivas, Cristina
|0 0000-0001-8228-477X
|b 27
700 1 _ |a Bendall, Sean C
|0 0000-0003-1341-2453
|b 28
700 1 _ |a Schumacher, Ton N
|0 0000-0003-0517-8804
|b 29
700 1 _ |a Ma, Zhicheng
|b 30
700 1 _ |a Bosse, Marc
|0 0000-0003-4912-8059
|b 31
700 1 _ |a van de Vijver, Marc J
|b 32
700 1 _ |a Tibshirani, Robert
|b 33
700 1 _ |a Horlings, Hugo M
|0 0000-0003-4782-8828
|b 34
700 1 _ |a Curtis, Christina
|0 0000-0003-0166-3802
|b 35
700 1 _ |a Kok, Marleen
|0 0000-0001-9043-9815
|b 36
700 1 _ |a Angelo, Michael
|0 0000-0003-1531-5067
|b 37
773 _ _ |a 10.1038/s43018-026-01114-5
|0 PERI:(DE-600)3005299-3
|p nn
|t Nature cancer
|v nn
|y 2026
|x 2662-1347
909 C O |o oai:inrepo02.dkfz.de:309972
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-He78)5cbf51db82a42b08a814f47dbc9412ca
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2026
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2025-11-07
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-11-07
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT CANCER : 2022
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-11-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-07
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT CANCER : 2022
|d 2025-11-07
920 1 _ |0 I:(DE-He78)D260-20160331
|k D260
|l NWG Systemimmunologie und Einzelzell-Biologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21