001     294551
005     20241118121354.0
024 7 _ |a 10.1016/j.stem.2024.04.020
|2 doi
024 7 _ |a pmid:38754428
|2 pmid
024 7 _ |a pmc:PMC11350610
|2 pmc
024 7 _ |a 1934-5909
|2 ISSN
024 7 _ |a 1875-9777
|2 ISSN
037 _ _ |a DKFZ-2024-02326
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Dellorusso, Paul V
|b 0
245 _ _ |a Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells.
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1731928124_6907
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a aging
|2 Other
650 _ 7 |a autophagy
|2 Other
650 _ 7 |a hematopoietic stem cells
|2 Other
650 _ 7 |a inflammation
|2 Other
650 _ 7 |a metabolism
|2 Other
650 _ 7 |a regeneration
|2 Other
650 _ 7 |a Suppressor of Cytokine Signaling 3 Protein
|2 NLM Chemicals
650 _ 7 |a Glucose
|0 IY9XDZ35W2
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Autophagy
|2 MeSH
650 _ 2 |a Hematopoietic Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Inflammation: pathology
|2 MeSH
650 _ 2 |a Inflammation: metabolism
|2 MeSH
650 _ 2 |a Glycolysis
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Aging: pathology
|2 MeSH
650 _ 2 |a Aging: metabolism
|2 MeSH
650 _ 2 |a Cellular Senescence
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
650 _ 2 |a Suppressor of Cytokine Signaling 3 Protein: metabolism
|2 MeSH
650 _ 2 |a Glucose: metabolism
|2 MeSH
700 1 _ |a Proven, Melissa A
|b 1
700 1 _ |a Calero-Nieto, Fernando J
|b 2
700 1 _ |a Wang, Xiaonan
|b 3
700 1 _ |a Mitchell, Carl A
|b 4
700 1 _ |a Hartmann, Felix
|0 P:(DE-He78)5cbf51db82a42b08a814f47dbc9412ca
|b 5
|u dkfz
700 1 _ |a Amouzgar, Meelad
|b 6
700 1 _ |a Favaro, Patricia
|b 7
700 1 _ |a DeVilbiss, Andrew
|b 8
700 1 _ |a Swann, James W
|b 9
700 1 _ |a Ho, Theodore T
|b 10
700 1 _ |a Zhao, Zhiyu
|b 11
700 1 _ |a Bendall, Sean C
|b 12
700 1 _ |a Morrison, Sean
|b 13
700 1 _ |a Göttgens, Berthold
|b 14
700 1 _ |a Passegué, Emmanuelle
|b 15
773 _ _ |a 10.1016/j.stem.2024.04.020
|g Vol. 31, no. 7, p. 1020 - 1037.e9
|0 PERI:(DE-600)2375356-0
|n 7
|p 1020 - 1037.e9
|t Cell stem cell
|v 31
|y 2024
|x 1934-5909
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)5cbf51db82a42b08a814f47dbc9412ca
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL STEM CELL : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b CELL STEM CELL : 2022
|d 2023-10-25
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-He78)W510-20160331
980 _ _ |a I:(DE-He78)W500-20160331
980 1 _ |a EXTERN4VITA


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21