001     306229
005     20251118110819.0
024 7 _ |a 10.1038/s41467-021-21983-x
|2 doi
024 7 _ |a pmid:33824318
|2 pmid
024 7 _ |a pmc:PMC8024260
|2 pmc
037 _ _ |a DKFZ-2025-02458
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Seidel, Einat
|0 0000-0001-9192-0272
|b 0
245 _ _ |a A slowly cleaved viral signal peptide acts as a protein-integral immune evasion domain.
260 _ _ |a [London]
|c 2021
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763460462_1939188
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #DKFZ-MOST-Ca186#
520 _ _ |a Stress can induce cell surface expression of MHC-like ligands, including MICA, that activate NK cells. Human cytomegalovirus (HCMV) glycoprotein US9 downregulates the activating immune ligand MICA*008 to avoid NK cell activation, but the underlying mechanism remains unclear. Here, we show that the N-terminal signal peptide is the major US9 functional domain targeting MICA*008 to proteasomal degradation. The US9 signal peptide is cleaved with unusually slow kinetics and this transiently retained signal peptide arrests MICA*008 maturation in the endoplasmic reticulum (ER), and indirectly induces its degradation via the ER quality control system and the SEL1L-HRD1 complex. We further identify an accessory, signal peptide-independent US9 mechanism that directly binds MICA*008 and SEL1L. Collectively, we describe a dual-targeting immunoevasin, demonstrating that signal peptides can function as protein-integral effector domains.
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Histocompatibility Antigens Class I
|2 NLM Chemicals
650 _ 7 |a MHC class I-related chain A
|2 NLM Chemicals
650 _ 7 |a Membrane Glycoproteins
|2 NLM Chemicals
650 _ 7 |a Mutant Proteins
|2 NLM Chemicals
650 _ 7 |a Protein Sorting Signals
|2 NLM Chemicals
650 _ 7 |a Proteins
|2 NLM Chemicals
650 _ 7 |a SEL1L protein, human
|2 NLM Chemicals
650 _ 7 |a US9 protein, Human herpesvirus 5
|2 NLM Chemicals
650 _ 7 |a Viral Proteins
|2 NLM Chemicals
650 _ 2 |a Cell Line
|2 MeSH
650 _ 2 |a Cytomegalovirus: immunology
|2 MeSH
650 _ 2 |a Cytomegalovirus: physiology
|2 MeSH
650 _ 2 |a Cytomegalovirus Infections: immunology
|2 MeSH
650 _ 2 |a Endoplasmic Reticulum: metabolism
|2 MeSH
650 _ 2 |a Endoplasmic Reticulum-Associated Degradation
|2 MeSH
650 _ 2 |a Histocompatibility Antigens Class I: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Immune Evasion
|2 MeSH
650 _ 2 |a Killer Cells, Natural: immunology
|2 MeSH
650 _ 2 |a Kinetics
|2 MeSH
650 _ 2 |a Membrane Glycoproteins: chemistry
|2 MeSH
650 _ 2 |a Membrane Glycoproteins: metabolism
|2 MeSH
650 _ 2 |a Mutant Proteins: chemistry
|2 MeSH
650 _ 2 |a Mutant Proteins: metabolism
|2 MeSH
650 _ 2 |a Protein Binding
|2 MeSH
650 _ 2 |a Protein Domains
|2 MeSH
650 _ 2 |a Protein Sorting Signals
|2 MeSH
650 _ 2 |a Proteins: metabolism
|2 MeSH
650 _ 2 |a Proteolysis
|2 MeSH
650 _ 2 |a Solubility
|2 MeSH
650 _ 2 |a Viral Proteins: chemistry
|2 MeSH
650 _ 2 |a Viral Proteins: metabolism
|2 MeSH
700 1 _ |a Dassa, Liat
|b 1
700 1 _ |a Kahlon, Shira
|b 2
700 1 _ |a Tirosh, Boaz
|0 0000-0001-8067-6577
|b 3
700 1 _ |a Halenius, Anne
|b 4
700 1 _ |a Seidel Malkinson, Tal
|b 5
700 1 _ |a Mandelboim, Ofer
|0 0000-0002-9354-1855
|b 6
773 _ _ |a 10.1038/s41467-021-21983-x
|g Vol. 12, no. 1, p. 2061
|0 PERI:(DE-600)2553671-0
|n 1
|p 2061
|t Nature Communications
|v 12
|y 2021
|x 2041-1723
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
980 _ _ |a journal
980 _ _ |a I:(DE-He78)W500-20160331
980 _ _ |a I:(DE-He78)W510-20160331
980 1 _ |a EXTERN4COORD


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21