001     306285
005     20251119104253.0
024 7 _ |a 10.1074/jbc.RA118.007292
|2 doi
024 7 _ |a pmid:30700553
|2 pmid
024 7 _ |a pmc:PMC6442025
|2 pmc
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
037 _ _ |a DKFZ-2025-02511
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Cohen, Itay
|b 0
245 _ _ |a Disulfide engineering of human Kunitz-type serine protease inhibitors enhances proteolytic stability and target affinity toward mesotrypsin.
260 _ _ |a Bethesda, Md.
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763545326_2172552
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #DKFZ-MOST-GR-2495#
520 _ _ |a Serine protease inhibitors of the Kunitz-bovine pancreatic trypsin inhibitor (BPTI) family are ubiquitous biological regulators of proteolysis. These small proteins are resistant to proteolysis, but can be slowly cleaved within the protease-binding loop by target proteases, thereby compromising their activity. For the human protease mesotrypsin, this cleavage is especially rapid. Here, we aimed to stabilize the Kunitz domain structure against proteolysis through disulfide engineering. Substitution within the Kunitz inhibitor domain of the amyloid precursor protein (APPI) that incorporated a new disulfide bond between residues 17 and 34 reduced proteolysis by mesotrypsin 74-fold. Similar disulfide engineering of tissue factor pathway inhibitor-1 Kunitz domain 1 (KD1TFPI1) and bikunin Kunitz domain 2 (KD2bikunin) likewise stabilized these inhibitors against mesotrypsin proteolysis 17- and 6.6-fold, respectively. Crystal structures of disulfide-engineered APPI and KD1TFPI1 variants in a complex with mesotrypsin at 1.5 and 2.0 Å resolution, respectively, confirmed the formation of well-ordered disulfide bonds positioned to stabilize the binding loop. Long all-atom molecular dynamics simulations of disulfide-engineered Kunitz domains and their complexes with mesotrypsin revealed conformational stabilization of the primed side of the inhibitor-binding loop by the engineered disulfide, along with global suppression of conformational dynamics in the Kunitz domain. Our findings suggest that the Cys-17-Cys-34 disulfide slows proteolysis by dampening conformational fluctuations in the binding loop and minimizing motion at the enzyme-inhibitor interface. The generalizable approach developed here for the stabilization against proteolysis of Kunitz domains, which can serve as important scaffolds for therapeutics, may thus find applications in drug development.
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a crystal structure
|2 Other
650 _ 7 |a disulfide
|2 Other
650 _ 7 |a molecular dynamics
|2 Other
650 _ 7 |a protease inhibitor
|2 Other
650 _ 7 |a protein engineering
|2 Other
650 _ 7 |a protein structure
|2 Other
650 _ 7 |a proteolysis
|2 Other
650 _ 7 |a serine protease
|2 Other
650 _ 7 |a APP protein, human
|2 NLM Chemicals
650 _ 7 |a Amyloid beta-Protein Precursor
|2 NLM Chemicals
650 _ 7 |a Disulfides
|2 NLM Chemicals
650 _ 7 |a Aprotinin
|0 9087-70-1
|2 NLM Chemicals
650 _ 7 |a PRSS3 protein, human
|0 EC 3.4.21.4
|2 NLM Chemicals
650 _ 7 |a Trypsin
|0 EC 3.4.21.4
|2 NLM Chemicals
650 _ 2 |a Amyloid beta-Protein Precursor: chemistry
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: genetics
|2 MeSH
650 _ 2 |a Amyloid beta-Protein Precursor: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Aprotinin: chemistry
|2 MeSH
650 _ 2 |a Aprotinin: genetics
|2 MeSH
650 _ 2 |a Aprotinin: metabolism
|2 MeSH
650 _ 2 |a Crystallography, X-Ray
|2 MeSH
650 _ 2 |a Disulfides: chemistry
|2 MeSH
650 _ 2 |a Disulfides: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Models, Molecular
|2 MeSH
650 _ 2 |a Protein Conformation
|2 MeSH
650 _ 2 |a Protein Domains
|2 MeSH
650 _ 2 |a Protein Engineering
|2 MeSH
650 _ 2 |a Proteolysis
|2 MeSH
650 _ 2 |a Trypsin: chemistry
|2 MeSH
650 _ 2 |a Trypsin: metabolism
|2 MeSH
700 1 _ |a Coban, Matt
|b 1
700 1 _ |a Shahar, Anat
|b 2
700 1 _ |a Sankaran, Banumathi
|b 3
700 1 _ |a Hockla, Alexandra
|b 4
700 1 _ |a Lacham, Shiran
|b 5
700 1 _ |a Caulfield, Thomas R
|b 6
700 1 _ |a Radisky, Evette S
|0 0000-0003-3121-109X
|b 7
700 1 _ |a Papo, Niv
|0 0000-0002-7056-2418
|b 8
773 _ _ |a 10.1074/jbc.RA118.007292
|g Vol. 294, no. 13, p. 5105 - 5120
|0 PERI:(DE-600)1474604-9
|n 13
|p 5105 - 5120
|t The journal of biological chemistry
|v 294
|y 2019
|x 0021-9258
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
980 _ _ |a journal
980 _ _ |a I:(DE-He78)W500-20160331
980 _ _ |a I:(DE-He78)W510-20160331
980 1 _ |a EXTERN4COORD


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21