000119256 001__ 119256
000119256 005__ 20240228145430.0
000119256 0247_ $$2doi$$a10.1016/j.bbamem.2016.10.007
000119256 0247_ $$2pmid$$apmid:27755971
000119256 0247_ $$2ISSN$$a0005-2736
000119256 0247_ $$2ISSN$$a1879-2642
000119256 0247_ $$2altmetric$$aaltmetric:12648412
000119256 037__ $$aDKFZ-2017-00042
000119256 041__ $$aeng
000119256 082__ $$a570
000119256 1001_ $$0P:(DE-HGF)0$$aUnsay, Joseph D$$b0$$eFirst author
000119256 245__ $$aPro-apoptotic cBid and Bax exhibit distinct membrane remodeling activities: An AFM study.
000119256 260__ $$aAmsterdam$$bElsevier$$c2017
000119256 3367_ $$2DRIVER$$aarticle
000119256 3367_ $$2DataCite$$aOutput Types/Journal article
000119256 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511336702_29010
000119256 3367_ $$2BibTeX$$aARTICLE
000119256 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119256 3367_ $$00$$2EndNote$$aJournal Article
000119256 520__ $$aBcl-2 proteins are key regulators of the mitochondrial outer membrane (MOM) permeabilization that mediates apoptosis. During apoptosis, Bid is cleaved (cBid) and translocates to the MOM, where it activates Bax. Bax then oligomerizes and induces MOM permeabilization. However, little is known about how these proteins affect membrane organization aside from pore formation. In previous studies, we have shown that both cBid and Bax are able to remodel membranes and stabilize curvature. Here, we dissected the independent effects of Bax and cBid on supported lipid structures mimicking the mitochondrial composition by means of atomic force spectroscopy. We show that cBid did not permeabilize the membrane but lowered the membrane breakthrough force. On the other hand, Bax effects were dependent on its oligomeric state. Monomeric Bax did not affect the membrane properties. In contrast, oligomeric Bax lowered the breakthrough force of the membrane, which in the context of pore formation, implies a lowering of the line tension at the edge of the pore.
000119256 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000119256 588__ $$aDataset connected to CrossRef, PubMed,
000119256 7001_ $$aCosentino, Katia$$b1
000119256 7001_ $$aSporbeck, Katharina$$b2
000119256 7001_ $$aGarcía-Sáez, Ana J$$b3
000119256 773__ $$0PERI:(DE-600)2209384-9$$a10.1016/j.bbamem.2016.10.007$$gVol. 1859, no. 1, p. 17 - 27$$n1$$p17 - 27$$tBiochimica et biophysica acta / Biomembranes$$v1859$$x0005-2736$$y2017
000119256 909CO $$ooai:inrepo02.dkfz.de:119256$$pVDB
000119256 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000119256 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBBA-BIOMEMBRANES : 2015
000119256 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119256 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000119256 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000119256 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119256 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119256 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119256 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119256 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000119256 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119256 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119256 9141_ $$y2017
000119256 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119256 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000119256 9201_ $$0I:(DE-He78)B160-20160331$$kB160$$lMembranbiophysik$$x0
000119256 980__ $$ajournal
000119256 980__ $$aVDB
000119256 980__ $$aI:(DE-He78)B160-20160331
000119256 980__ $$aUNRESTRICTED