001     119264
005     20240228145430.0
024 7 _ |2 doi
|a 10.1038/ni.3630
024 7 _ |2 pmid
|a pmid:27869820
024 7 _ |2 ISSN
|a 1529-2908
024 7 _ |2 ISSN
|a 1529-2916
024 7 _ |a altmetric:13890463
|2 altmetric
037 _ _ |a DKFZ-2017-00050
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Tsagaratou, Ageliki
|b 0
245 _ _ |a TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.
260 _ _ |a New York, NY
|b Nature America Inc.
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1511333508_28942
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4(+)CD8(+) double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).
536 _ _ |0 G:(DE-HGF)POF3-312
|a 312 - Functional and structural genomics (POF3-312)
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a González-Avalos, Edahí
|b 1
700 1 _ |a Rautio, Sini
|b 2
700 1 _ |a Scott-Browne, James P
|b 3
700 1 _ |a Togher, Susan
|b 4
700 1 _ |a Pastor, William A
|b 5
700 1 _ |0 http://orcid.org/0000-0002-3901-347X
|a Rothenberg, Ellen V
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Chavez, Lukas
|b 7
700 1 _ |a Lähdesmäki, Harri
|b 8
700 1 _ |a Rao, Anjana
|b 9
773 _ _ |0 PERI:(DE-600)2026412-4
|a 10.1038/ni.3630
|g Vol. 18, no. 1, p. 45 - 53
|n 1
|p 45 - 53
|t Nature immunology
|v 18
|x 1529-2916
|y 2017
909 C O |o oai:inrepo02.dkfz.de:119264
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-HGF)0
|a Deutsches Krebsforschungszentrum
|b 7
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-312
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|a DE-HGF
|l Krebsforschung
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT IMMUNOL : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9915
|2 StatID
|a IF >= 15
|b NAT IMMUNOL : 2015
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21