000119273 001__ 119273
000119273 005__ 20240228145431.0
000119273 0247_ $$2doi$$a10.1002/mrm.26100
000119273 0247_ $$2pmid$$apmid:26845067
000119273 0247_ $$2ISSN$$a0740-3194
000119273 0247_ $$2ISSN$$a1522-2594
000119273 0247_ $$2altmetric$$aaltmetric:5096533
000119273 037__ $$aDKFZ-2017-00059
000119273 041__ $$aeng
000119273 082__ $$a610
000119273 1001_ $$0P:(DE-He78)db923d831c5fe9b5e8fab7794dd45c44$$aZaiss, Moritz$$b0$$eFirst author$$udkfz
000119273 245__ $$aDownfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma.
000119273 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2017
000119273 3367_ $$2DRIVER$$aarticle
000119273 3367_ $$2DataCite$$aOutput Types/Journal article
000119273 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525770664_9511
000119273 3367_ $$2BibTeX$$aARTICLE
000119273 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119273 3367_ $$00$$2EndNote$$aJournal Article
000119273 520__ $$aThe chemical exchange saturation transfer (CEST) effect observed in brain tissue in vivo at the frequency offset 3.5 ppm downfield of water was assigned to amide protons of the protein backbone. Obeying a base-catalyzed exchange process such an amide-CEST effect would correlate with intracellular pH and protein concentration, correlations that are highly interesting for cancer diagnosis. However, recent experiments suggested that, besides the known aliphatic relayed-nuclear Overhauser effect (rNOE) upfield of water, an additional downfield rNOE is apparent in vivo resonating as well around +3.5 ppm. In this study, we present further evidence for the underlying downfield-rNOE signal, and we propose a first method that suppresses the downfield-rNOE contribution to the amide-CEST contrast. Thus, an isolated amide-CEST effect depending mainly on amide proton concentration and pH is generated.The isolation of the exchange mediated amide proton effect was investigated in protein model-solutions and tissue lysates and successfully applied to in vivo CEST images of 11 glioblastoma patients.Comparison with gadolinium contrast enhancing longitudinal relaxation time-weighted images revealed that the downfield-rNOE-suppressed amide-CEST contrast forms a unique contrast that delineates tumor regions and show remarkable overlap with the gadolinium contrast enhancement.Thus, suppression of the downfield rNOE contribution might be the important step to yield the amide proton CEST contrast originally aimed at. Magn Reson Med 77:196-208, 2017. © 2016 Wiley Periodicals, Inc.
000119273 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000119273 588__ $$aDataset connected to CrossRef, PubMed,
000119273 7001_ $$0P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aWindschuh, Johannes$$b1$$udkfz
000119273 7001_ $$0P:(DE-HGF)0$$aGoerke, Steffen$$b2
000119273 7001_ $$0P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aPaech, Daniel$$b3$$udkfz
000119273 7001_ $$0P:(DE-He78)65fe7a46247e2ac4b15f194631c56cd1$$aMeissner, Jan-Eric$$b4$$udkfz
000119273 7001_ $$aBurth, Sina$$b5
000119273 7001_ $$0P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e$$aKickingereder, Philipp$$b6$$udkfz
000119273 7001_ $$0P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aWick, Wolfgang$$b7$$udkfz
000119273 7001_ $$aBendszus, Martin$$b8
000119273 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b9$$udkfz
000119273 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b10$$udkfz
000119273 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b11$$udkfz
000119273 7001_ $$0P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aRadbruch, Alexander$$b12$$eLast author$$udkfz
000119273 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.26100$$gVol. 77, no. 1, p. 196 - 208$$n1$$p196 - 208$$tMagnetic resonance in medicine$$v77$$x0740-3194$$y2017
000119273 909CO $$ooai:inrepo02.dkfz.de:119273$$pVDB
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)db923d831c5fe9b5e8fab7794dd45c44$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)65fe7a46247e2ac4b15f194631c56cd1$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000119273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000119273 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000119273 9141_ $$y2017
000119273 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000119273 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2015
000119273 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119273 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119273 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119273 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119273 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119273 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119273 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000119273 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000119273 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119273 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119273 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000119273 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x1
000119273 9201_ $$0I:(DE-He78)E012-20160331$$kE012$$lNeuroonkologische Bildgebung$$x2
000119273 9201_ $$0I:(DE-He78)G370-20160331$$kG370$$lKKE Neuroonkologie$$x3
000119273 980__ $$ajournal
000119273 980__ $$aVDB
000119273 980__ $$aI:(DE-He78)E020-20160331
000119273 980__ $$aI:(DE-He78)E010-20160331
000119273 980__ $$aI:(DE-He78)E012-20160331
000119273 980__ $$aI:(DE-He78)G370-20160331
000119273 980__ $$aUNRESTRICTED