000119320 001__ 119320
000119320 005__ 20240228145432.0
000119320 0247_ $$2doi$$a10.1007/s00415-016-8353-3
000119320 0247_ $$2pmid$$apmid:27909801
000119320 0247_ $$2ISSN$$a0012-1037
000119320 0247_ $$2ISSN$$a0340-5354
000119320 0247_ $$2ISSN$$a0939-1517
000119320 0247_ $$2ISSN$$a1432-1459
000119320 0247_ $$2ISSN$$a1619-800X
000119320 037__ $$aDKFZ-2017-00075
000119320 041__ $$aeng
000119320 082__ $$a610
000119320 1001_ $$0http://orcid.org/0000-0002-9980-2390$$aBreckwoldt, Michael O$$b0$$eFirst author
000119320 245__ $$aIncreasing the sensitivity of MRI for the detection of multiple sclerosis lesions by long axial coverage of the spinal cord: a prospective study in 119 patients.
000119320 260__ $$aBerlin$$bSpringer59671$$c2017
000119320 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2016-12-01
000119320 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2017-02-01
000119320 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2017-02-01
000119320 3367_ $$2DRIVER$$aarticle
000119320 3367_ $$2DataCite$$aOutput Types/Journal article
000119320 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1533813378_16775
000119320 3367_ $$2BibTeX$$aARTICLE
000119320 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119320 3367_ $$00$$2EndNote$$aJournal Article
000119320 520__ $$aDiagnostic imaging criteria of multiple sclerosis (MS) include the spatial and temporal dissemination of cerebral and/or spinal cord lesions. Magnetic resonance imaging (MRI) is the method of choice for initial diagnosis and follow-up disease monitoring. Current guidelines for spinal MRI recommend sagittal imaging of the spinal cord and lesion confirmation on axial planes if lesions are detected. Sagittal imaging is, however, hampered by technical (e.g. partial volume effects, motion artifacts) and anatomical (e.g. scoliosis) limitations. We hypothesized that long coverage of the spinal cord by axial image acquisition has superior diagnostic performance compared to sagittal imaging and can identify otherwise undetected lesions. Our prospective clinical study included 119 MS patients. Axial MRI revealed ~2.5-fold more lesions than the sagittal angulation (axial lesion load: 4.0 ± 2.4 vs. 1.6 ± 1.2 lesions on sagittal planes, p < 0.001). Importantly, 20 patients (17%) with normal sagittal MRI scans had unequivocal lesions only visible on axial planes (mean lesion number on axial planes in these patients: 2.0 ± 1.3). Moreover, 45 patients (38%) showed a discrepancy of ≥3 lesions that were found additionally on axial scans (mean difference 4.4 ± 1.7). Additionally identified lesions were on average smaller in size and located more laterally within the spinal cord. No lesion on sagittal images was missed on the axial angulation. Our study demonstrates that imaging of small axial segments for lesion confirmation is insufficient in spinal imaging. We recommend implementing a long coverage axial MRI sequence for spinal imaging of MS patients.
000119320 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000119320 542__ $$2Crossref$$i2016-12-01$$uhttp://www.springer.com/tdm
000119320 588__ $$aDataset connected to CrossRef, PubMed,
000119320 7001_ $$0P:(DE-HGF)0$$aGradl, Johann$$b1
000119320 7001_ $$0P:(DE-HGF)0$$aHähnel, Stefan$$b2
000119320 7001_ $$0P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aHielscher, Thomas$$b3$$udkfz
000119320 7001_ $$0P:(DE-HGF)0$$aWildemann, Brigitte$$b4
000119320 7001_ $$0P:(DE-He78)0b1c40947becd495c5aa9778ef098ef4$$aDiem, Ricarda$$b5$$udkfz
000119320 7001_ $$0P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5$$aPlatten, Michael$$b6$$udkfz
000119320 7001_ $$0P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aWick, Wolfgang$$b7$$udkfz
000119320 7001_ $$aHeiland, Sabine$$b8
000119320 7001_ $$aBendszus, Martin$$b9
000119320 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-016-8353-3$$bSpringer Science and Business Media LLC$$d2016-12-01$$n2$$p341-349$$tJournal of Neurology$$v264$$x0340-5354$$y2016
000119320 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-016-8353-3$$gVol. 264, no. 2, p. 341 - 349$$n2$$p341-349$$tJournal of neurology$$v264$$x0340-5354$$y2016
000119320 909CO $$ooai:inrepo02.dkfz.de:119320$$pVDB
000119320 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000119320 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000119320 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000119320 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000119320 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0b1c40947becd495c5aa9778ef098ef4$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000119320 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000119320 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000119320 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000119320 9141_ $$y2017
000119320 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119320 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119320 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2015
000119320 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000119320 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000119320 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000119320 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119320 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119320 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119320 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119320 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000119320 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119320 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119320 9201_ $$0I:(DE-He78)G370-20160331$$kG370$$lKKE Neuroonkologie$$x0
000119320 9201_ $$0I:(DE-He78)G160-20160331$$kG160$$lNeuroimmunologie und Hirntumorimmunologie$$x1
000119320 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x2
000119320 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x3
000119320 980__ $$ajournal
000119320 980__ $$aVDB
000119320 980__ $$aI:(DE-He78)G370-20160331
000119320 980__ $$aI:(DE-He78)G160-20160331
000119320 980__ $$aI:(DE-He78)C060-20160331
000119320 980__ $$aI:(DE-He78)L101-20160331
000119320 980__ $$aUNRESTRICTED
000119320 999C5 $$1EM Frohman$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMra052130$$p942 -$$tN Engl J Med$$uFrohman EM, Racke MK, Raine CS (2006) Multiple sclerosis-the plaque and its pathogenesis. N Engl J Med 354:942–955$$v354$$y2006
000119320 999C5 $$1BD Trapp$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.neuro.30.051606.094313$$p247 -$$tAnnu Rev Neurosci$$uTrapp BD, Nave K-A (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269$$v31$$y2008
000119320 999C5 $$1GJ Nijeholt$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/121.4.687$$p687 -$$tBrain$$uNijeholt GJ, van Walderveen MA, Castelijns JA et al (1998) Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 121:687–697$$v121$$y1998
000119320 999C5 $$1C Lukas$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.13122566$$p542 -$$tRadiology$$uLukas C, Sombekke MH, Bellenberg B et al (2013) Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology 269:542–552$$v269$$y2013
000119320 999C5 $$1JH Noseworthy$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJM200009283431307$$p938 -$$tN Engl J Med$$uNoseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952$$v343$$y2000
000119320 999C5 $$1A Traboulsee$$2Crossref$$9-- missing cx lookup --$$a10.3174/ajnr.A4539$$p394 -$$tAm J Neuroradiol$$uTraboulsee A, Simon JH, Stone L et al (2016) Revised Recommendations of the Consortium of MS Centers Task Force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. Am J Neuroradiol 37:394–401$$v37$$y2016
000119320 999C5 $$1MP Wattjes$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrneurol.2015.157$$p597 -$$tNat Rev Neurol$$uWattjes MP, Rovira À, Miller D et al (2015) MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol 11:597–606$$v11$$y2015
000119320 999C5 $$1M Filippi$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1474-4422(15)00393-2$$p292 -$$tLancet Neurol$$uFilippi M, Rocca MA, Ciccarelli O et al (2016) MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 15:292–303$$v15$$y2016
000119320 999C5 $$1M Filippi$$2Crossref$$9-- missing cx lookup --$$a10.1097/WCO.0000000000000095$$p290 -$$tCurr Opin Neurol$$uFilippi M, Preziosa P, Rocca MA (2014) Magnetic resonance outcome measures in multiple sclerosis trials. Curr Opin Neurol 27:290–299$$v27$$y2014
000119320 999C5 $$1S Renowden$$2Crossref$$9-- missing cx lookup --$$a10.1136/practneurol-2014-000857$$p231 -$$tPract Neurol$$uRenowden S (2014) Imaging in multiple sclerosis and related disorders. Pract Neurol 14:231–241$$v14$$y2014
000119320 999C5 $$1MP Wattjes$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00062-015-0430-y$$p157 -$$tClin Neuroradiol$$uWattjes MP, Steenwijk MD, Stangel M (2015) MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin Neuroradiol 25:157–165$$v25$$y2015
000119320 999C5 $$1H Kearney$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrneurol.2015.80$$p327 -$$tNat Rev Neurol$$uKearney H, Miller DH, Ciccarelli O (2015) Spinal cord MRI in multiple sclerosis—diagnostic, prognostic and clinical value. Nat Rev Neurol 11:327–338$$v11$$y2015
000119320 999C5 $$1JK Swanton$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1474-4422(07)70176-X$$p677 -$$tLancet Neurol$$uSwanton JK, Rovira À, Tintoré M et al (2007) MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol 6:677–686$$v6$$y2007
000119320 999C5 $$1S Galler$$2Crossref$$9-- missing cx lookup --$$a10.3174/ajnr.A4638$$p963 -$$tAm J Neuroradiol$$uGaller S, Stellmann JP, Young KL et al (2016) Improved lesion detection by using axial T2-weighted MRI with full spinal cord coverage in multiple sclerosis. Am J Neuroradiol 37:963–969$$v37$$y2016
000119320 999C5 $$1D Kidd$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.43.12.2632$$p2632 -$$tNeurology$$uKidd D, Thorpe JW, Thompson AJ et al (1993) Spinal cord MRI using multi-array coils and fast spin echo II. Findings in multiple sclerosis. Neurology 43:2632–2637$$v43$$y1993
000119320 999C5 $$1M Bilgen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mri.2005.02.003$$p601 -$$tMagn Reson Imaging$$uBilgen M, Al-Hafez B, Malone TM, Smirnova IV (2005) Ex vivo magnetic resonance imaging of rat spinal cord at 9.4 T. Magn Reson Imaging 23:601–605$$v23$$y2005
000119320 999C5 $$2Crossref$$uR Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Viennas. http://www.R-project.org/ . Accessed 24 Nov 2016
000119320 999C5 $$1JCJ Bot$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.2231010707$$p46 -$$tRadiology$$uBot JCJ, Barkhof F, à Nijeholt GL et al (2002) Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology 223:46–56$$v223$$y2002
000119320 999C5 $$1MH Sombekke$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0b013e31827b1a67$$p69 -$$tNeurology$$uSombekke MH, Wattjes MP, Balk LJ et al (2013) Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology 80:69–75$$v80$$y2013
000119320 999C5 $$1JCJ Bot$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.62.2.226$$p226 -$$tNeurology$$uBot JCJ, Barkhof F, Polman CH et al (2004) Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology 62:226–233$$v62$$y2004
000119320 999C5 $$1R Schmidt$$2Crossref$$9-- missing cx lookup --$$a10.1038/jcbfm.2015.72$$p26 -$$tJ Cereb Blood Flow Metab$$uSchmidt R, Seiler S, Loitfelder M (2016) Longitudinal change of small-vessel disease-related brain abnormalities. J Cereb Blood Flow Metab 36:26–39$$v36$$y2016
000119320 999C5 $$1DM Wingerchuk$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mayocp.2013.11.002$$p225 -$$tMayo Clin Proc$$uWingerchuk DM, Carter JL (2014) Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc 89:225–240$$v89$$y2014
000119320 999C5 $$1A Winkelmann$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrneurol.2016.21$$p217 -$$tNat Rev Neurol$$uWinkelmann A, Loebermann M, Reisinger EC et al (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12:217–233$$v12$$y2016
000119320 999C5 $$1JM Honce$$2Crossref$$uHonce JM, Nagae L, Nyberg E (2015) Neuroimaging of natalizumab complications in multiple sclerosis: PML and other associated entities. Mult Scler Int 2015:809252$$y2015
000119320 999C5 $$1DL Rotstein$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamaneurol.2014.3537$$p152 -$$tJAMA Neurol$$uRotstein DL, Healy BC, Malik MT et al (2015) Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol 72:152–158$$v72$$y2015
000119320 999C5 $$1K Weier$$2Crossref$$9-- missing cx lookup --$$a10.1177/1352458512442754$$p1560 -$$tMult Scler J$$uWeier K, Mazraeh J, Naegelin Y et al (2012) Biplanar MRI for the assessment of the spinal cord in multiple sclerosis. Mult Scler J 18:1560–1569$$v18$$y2012
000119320 999C5 $$1X Montalban$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0b013e3181cec45c$$p427 -$$tNeurology$$uMontalban X, Tintore M, Swanton J et al (2010) MRI criteria for MS in patients with clinically isolated syndromes. Neurology 74:427–434$$v74$$y2010
000119320 999C5 $$1DT Okuda$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0b013e31820d8b1d$$p686 -$$tNeurology$$uOkuda DT, Mowry EM, Cree BAC et al (2011) Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology 76:686–692$$v76$$y2011
000119320 999C5 $$1R Schlaeger$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamaneurol.2015.0993$$p897 -$$tJAMA Neurol$$uSchlaeger R, Papinutto N, Zhu AH et al (2015) Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol 72:897–904$$v72$$y2015
000119320 999C5 $$1R Schlaeger$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.24241$$p568 -$$tAnn Neurol$$uSchlaeger R, Papinutto N, Panara V et al (2014) Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol 76:568–580$$v76$$y2014