001     119320
005     20240228145432.0
024 7 _ |a 10.1007/s00415-016-8353-3
|2 doi
024 7 _ |a pmid:27909801
|2 pmid
024 7 _ |a 0012-1037
|2 ISSN
024 7 _ |a 0340-5354
|2 ISSN
024 7 _ |a 0939-1517
|2 ISSN
024 7 _ |a 1432-1459
|2 ISSN
024 7 _ |a 1619-800X
|2 ISSN
037 _ _ |a DKFZ-2017-00075
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Breckwoldt, Michael O
|0 http://orcid.org/0000-0002-9980-2390
|b 0
|e First author
245 _ _ |a Increasing the sensitivity of MRI for the detection of multiple sclerosis lesions by long axial coverage of the spinal cord: a prospective study in 119 patients.
260 _ _ |a Berlin
|c 2017
|b Springer59671
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2016-12-01
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2017-02-01
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2017-02-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1533813378_16775
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Diagnostic imaging criteria of multiple sclerosis (MS) include the spatial and temporal dissemination of cerebral and/or spinal cord lesions. Magnetic resonance imaging (MRI) is the method of choice for initial diagnosis and follow-up disease monitoring. Current guidelines for spinal MRI recommend sagittal imaging of the spinal cord and lesion confirmation on axial planes if lesions are detected. Sagittal imaging is, however, hampered by technical (e.g. partial volume effects, motion artifacts) and anatomical (e.g. scoliosis) limitations. We hypothesized that long coverage of the spinal cord by axial image acquisition has superior diagnostic performance compared to sagittal imaging and can identify otherwise undetected lesions. Our prospective clinical study included 119 MS patients. Axial MRI revealed ~2.5-fold more lesions than the sagittal angulation (axial lesion load: 4.0 ± 2.4 vs. 1.6 ± 1.2 lesions on sagittal planes, p < 0.001). Importantly, 20 patients (17%) with normal sagittal MRI scans had unequivocal lesions only visible on axial planes (mean lesion number on axial planes in these patients: 2.0 ± 1.3). Moreover, 45 patients (38%) showed a discrepancy of ≥3 lesions that were found additionally on axial scans (mean difference 4.4 ± 1.7). Additionally identified lesions were on average smaller in size and located more laterally within the spinal cord. No lesion on sagittal images was missed on the axial angulation. Our study demonstrates that imaging of small axial segments for lesion confirmation is insufficient in spinal imaging. We recommend implementing a long coverage axial MRI sequence for spinal imaging of MS patients.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
542 _ _ |i 2016-12-01
|2 Crossref
|u http://www.springer.com/tdm
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Gradl, Johann
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hähnel, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 3
|u dkfz
700 1 _ |a Wildemann, Brigitte
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Diem, Ricarda
|0 P:(DE-He78)0b1c40947becd495c5aa9778ef098ef4
|b 5
|u dkfz
700 1 _ |a Platten, Michael
|0 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
|b 6
|u dkfz
700 1 _ |a Wick, Wolfgang
|0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
|b 7
|u dkfz
700 1 _ |a Heiland, Sabine
|b 8
700 1 _ |a Bendszus, Martin
|b 9
773 1 8 |a 10.1007/s00415-016-8353-3
|b Springer Science and Business Media LLC
|d 2016-12-01
|n 2
|p 341-349
|3 journal-article
|2 Crossref
|t Journal of Neurology
|v 264
|y 2016
|x 0340-5354
773 _ _ |a 10.1007/s00415-016-8353-3
|g Vol. 264, no. 2, p. 341 - 349
|0 PERI:(DE-600)1421299-7
|n 2
|p 341-349
|t Journal of neurology
|v 264
|y 2016
|x 0340-5354
909 C O |p VDB
|o oai:inrepo02.dkfz.de:119320
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)0b1c40947becd495c5aa9778ef098ef4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)G370-20160331
|k G370
|l KKE Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)G160-20160331
|k G160
|l Neuroimmunologie und Hirntumorimmunologie
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G370-20160331
980 _ _ |a I:(DE-He78)G160-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1056/NEJMra052130
|9 -- missing cx lookup --
|1 EM Frohman
|p 942 -
|2 Crossref
|u Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis-the plaque and its pathogenesis. N Engl J Med 354:942–955
|t N Engl J Med
|v 354
|y 2006
999 C 5 |a 10.1146/annurev.neuro.30.051606.094313
|9 -- missing cx lookup --
|1 BD Trapp
|p 247 -
|2 Crossref
|u Trapp BD, Nave K-A (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269
|t Annu Rev Neurosci
|v 31
|y 2008
999 C 5 |a 10.1093/brain/121.4.687
|9 -- missing cx lookup --
|1 GJ Nijeholt
|p 687 -
|2 Crossref
|u Nijeholt GJ, van Walderveen MA, Castelijns JA et al (1998) Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 121:687–697
|t Brain
|v 121
|y 1998
999 C 5 |a 10.1148/radiol.13122566
|9 -- missing cx lookup --
|1 C Lukas
|p 542 -
|2 Crossref
|u Lukas C, Sombekke MH, Bellenberg B et al (2013) Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology 269:542–552
|t Radiology
|v 269
|y 2013
999 C 5 |a 10.1056/NEJM200009283431307
|9 -- missing cx lookup --
|1 JH Noseworthy
|p 938 -
|2 Crossref
|u Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952
|t N Engl J Med
|v 343
|y 2000
999 C 5 |a 10.3174/ajnr.A4539
|9 -- missing cx lookup --
|1 A Traboulsee
|p 394 -
|2 Crossref
|u Traboulsee A, Simon JH, Stone L et al (2016) Revised Recommendations of the Consortium of MS Centers Task Force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. Am J Neuroradiol 37:394–401
|t Am J Neuroradiol
|v 37
|y 2016
999 C 5 |a 10.1038/nrneurol.2015.157
|9 -- missing cx lookup --
|1 MP Wattjes
|p 597 -
|2 Crossref
|u Wattjes MP, Rovira À, Miller D et al (2015) MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol 11:597–606
|t Nat Rev Neurol
|v 11
|y 2015
999 C 5 |a 10.1016/S1474-4422(15)00393-2
|9 -- missing cx lookup --
|1 M Filippi
|p 292 -
|2 Crossref
|u Filippi M, Rocca MA, Ciccarelli O et al (2016) MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 15:292–303
|t Lancet Neurol
|v 15
|y 2016
999 C 5 |a 10.1097/WCO.0000000000000095
|9 -- missing cx lookup --
|1 M Filippi
|p 290 -
|2 Crossref
|u Filippi M, Preziosa P, Rocca MA (2014) Magnetic resonance outcome measures in multiple sclerosis trials. Curr Opin Neurol 27:290–299
|t Curr Opin Neurol
|v 27
|y 2014
999 C 5 |a 10.1136/practneurol-2014-000857
|9 -- missing cx lookup --
|1 S Renowden
|p 231 -
|2 Crossref
|u Renowden S (2014) Imaging in multiple sclerosis and related disorders. Pract Neurol 14:231–241
|t Pract Neurol
|v 14
|y 2014
999 C 5 |a 10.1007/s00062-015-0430-y
|9 -- missing cx lookup --
|1 MP Wattjes
|p 157 -
|2 Crossref
|u Wattjes MP, Steenwijk MD, Stangel M (2015) MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin Neuroradiol 25:157–165
|t Clin Neuroradiol
|v 25
|y 2015
999 C 5 |a 10.1038/nrneurol.2015.80
|9 -- missing cx lookup --
|1 H Kearney
|p 327 -
|2 Crossref
|u Kearney H, Miller DH, Ciccarelli O (2015) Spinal cord MRI in multiple sclerosis—diagnostic, prognostic and clinical value. Nat Rev Neurol 11:327–338
|t Nat Rev Neurol
|v 11
|y 2015
999 C 5 |a 10.1016/S1474-4422(07)70176-X
|9 -- missing cx lookup --
|1 JK Swanton
|p 677 -
|2 Crossref
|u Swanton JK, Rovira À, Tintoré M et al (2007) MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol 6:677–686
|t Lancet Neurol
|v 6
|y 2007
999 C 5 |a 10.3174/ajnr.A4638
|9 -- missing cx lookup --
|1 S Galler
|p 963 -
|2 Crossref
|u Galler S, Stellmann JP, Young KL et al (2016) Improved lesion detection by using axial T2-weighted MRI with full spinal cord coverage in multiple sclerosis. Am J Neuroradiol 37:963–969
|t Am J Neuroradiol
|v 37
|y 2016
999 C 5 |a 10.1212/WNL.43.12.2632
|9 -- missing cx lookup --
|1 D Kidd
|p 2632 -
|2 Crossref
|u Kidd D, Thorpe JW, Thompson AJ et al (1993) Spinal cord MRI using multi-array coils and fast spin echo II. Findings in multiple sclerosis. Neurology 43:2632–2637
|t Neurology
|v 43
|y 1993
999 C 5 |a 10.1016/j.mri.2005.02.003
|9 -- missing cx lookup --
|1 M Bilgen
|p 601 -
|2 Crossref
|u Bilgen M, Al-Hafez B, Malone TM, Smirnova IV (2005) Ex vivo magnetic resonance imaging of rat spinal cord at 9.4 T. Magn Reson Imaging 23:601–605
|t Magn Reson Imaging
|v 23
|y 2005
999 C 5 |2 Crossref
|u R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Viennas. http://www.R-project.org/ . Accessed 24 Nov 2016
999 C 5 |a 10.1148/radiol.2231010707
|9 -- missing cx lookup --
|1 JCJ Bot
|p 46 -
|2 Crossref
|u Bot JCJ, Barkhof F, à Nijeholt GL et al (2002) Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology 223:46–56
|t Radiology
|v 223
|y 2002
999 C 5 |a 10.1212/WNL.0b013e31827b1a67
|9 -- missing cx lookup --
|1 MH Sombekke
|p 69 -
|2 Crossref
|u Sombekke MH, Wattjes MP, Balk LJ et al (2013) Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology 80:69–75
|t Neurology
|v 80
|y 2013
999 C 5 |a 10.1212/WNL.62.2.226
|9 -- missing cx lookup --
|1 JCJ Bot
|p 226 -
|2 Crossref
|u Bot JCJ, Barkhof F, Polman CH et al (2004) Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology 62:226–233
|t Neurology
|v 62
|y 2004
999 C 5 |a 10.1038/jcbfm.2015.72
|9 -- missing cx lookup --
|1 R Schmidt
|p 26 -
|2 Crossref
|u Schmidt R, Seiler S, Loitfelder M (2016) Longitudinal change of small-vessel disease-related brain abnormalities. J Cereb Blood Flow Metab 36:26–39
|t J Cereb Blood Flow Metab
|v 36
|y 2016
999 C 5 |a 10.1016/j.mayocp.2013.11.002
|9 -- missing cx lookup --
|1 DM Wingerchuk
|p 225 -
|2 Crossref
|u Wingerchuk DM, Carter JL (2014) Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc 89:225–240
|t Mayo Clin Proc
|v 89
|y 2014
999 C 5 |a 10.1038/nrneurol.2016.21
|9 -- missing cx lookup --
|1 A Winkelmann
|p 217 -
|2 Crossref
|u Winkelmann A, Loebermann M, Reisinger EC et al (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12:217–233
|t Nat Rev Neurol
|v 12
|y 2016
999 C 5 |1 JM Honce
|y 2015
|2 Crossref
|u Honce JM, Nagae L, Nyberg E (2015) Neuroimaging of natalizumab complications in multiple sclerosis: PML and other associated entities. Mult Scler Int 2015:809252
999 C 5 |a 10.1001/jamaneurol.2014.3537
|9 -- missing cx lookup --
|1 DL Rotstein
|p 152 -
|2 Crossref
|u Rotstein DL, Healy BC, Malik MT et al (2015) Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol 72:152–158
|t JAMA Neurol
|v 72
|y 2015
999 C 5 |a 10.1177/1352458512442754
|9 -- missing cx lookup --
|1 K Weier
|p 1560 -
|2 Crossref
|u Weier K, Mazraeh J, Naegelin Y et al (2012) Biplanar MRI for the assessment of the spinal cord in multiple sclerosis. Mult Scler J 18:1560–1569
|t Mult Scler J
|v 18
|y 2012
999 C 5 |a 10.1212/WNL.0b013e3181cec45c
|9 -- missing cx lookup --
|1 X Montalban
|p 427 -
|2 Crossref
|u Montalban X, Tintore M, Swanton J et al (2010) MRI criteria for MS in patients with clinically isolated syndromes. Neurology 74:427–434
|t Neurology
|v 74
|y 2010
999 C 5 |a 10.1212/WNL.0b013e31820d8b1d
|9 -- missing cx lookup --
|1 DT Okuda
|p 686 -
|2 Crossref
|u Okuda DT, Mowry EM, Cree BAC et al (2011) Asymptomatic spinal cord lesions predict disease progression in radiologically isolated syndrome. Neurology 76:686–692
|t Neurology
|v 76
|y 2011
999 C 5 |a 10.1001/jamaneurol.2015.0993
|9 -- missing cx lookup --
|1 R Schlaeger
|p 897 -
|2 Crossref
|u Schlaeger R, Papinutto N, Zhu AH et al (2015) Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol 72:897–904
|t JAMA Neurol
|v 72
|y 2015
999 C 5 |a 10.1002/ana.24241
|9 -- missing cx lookup --
|1 R Schlaeger
|p 568 -
|2 Crossref
|u Schlaeger R, Papinutto N, Panara V et al (2014) Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol 76:568–580
|t Ann Neurol
|v 76
|y 2014


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21