001     119331
005     20240228145433.0
024 7 _ |a 10.2967/jnumed.116.179648
|2 doi
024 7 _ |a pmid:27660141
|2 pmid
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
024 7 _ |a altmetric:12190304
|2 altmetric
037 _ _ |a DKFZ-2017-00086
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Giesel, Frederik
|0 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94
|b 0
|e First author
245 _ _ |a Correlation Between SUVmax and CT Radiomic Analysis Using Lymph Node Density in PET/CT-Based Lymph Node Staging.
260 _ _ |a New York, NY
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660725487_9214
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In patients with lung cancer (LC), malignant melanoma (MM), gastroenteropancreatic neuroendocrine tumors (GEP NETs), and prostate cancer (PCA), lymph node (LN) staging is often performed by (18)F-FDG PET/CT (LC and MM), (68)Ga-DOTATOC PET/CT (GEP NET), and (68)Ga-labeled prostate-specific membrane antigen PET/CT (PCA) but is sometimes not accurate because of indeterminate PET findings. To better evaluate malignant LN infiltration, additional surrogate parameters, especially in cases with indeterminate PET findings, would be helpful. The purpose of this study was to evaluate whether SUVmax in the PET examination might correlate with semiautomated density measurements of LNs in the CT component of the PET/CT examination.After approval by the institutional review board, 1,022 LNs in the PET/CT examinations of 148 patients were retrospectively analyzed (LC: 327 LNs of 40 patients; MM: 224 LNs of 33 patients; GEP NET: 217 LNs of 35 patients; and PCA: 254 LNs of 40 patients). PET/CT was performed before surgery, biopsy, chemotherapy, or internal or external radiation therapy, according to the clinical schedule; patients with prior chemotherapy or radiation therapy were excluded. SUVmax analyses were based on uptake 60 min after tracer injection, and volumetric CT histogram analyses were based on the unenhanced CT images of the PET/CT scan.PET findings were considered positive or negative on the basis of SUVmax in the LN compared with that in the blood pool; histologic confirmation was not available. Of the 1,022 LNs, 331 were PET-positive (3 times the SUVmax of the blood pool), 86 were PET-indeterminate (1-3 times the SUVmax of the blood pool), and 605 were PET-negative (less than the SUVmax of the blood pool). PET-positive LNs had significantly higher CT densities than PET-negative LNs, irrespective of the type of cancer.CT density measurements of LNs in patients with LC, MM, GEP NET, and PCA correlated with(18)F-FDG uptake, (68)Ga-DOTATOC uptake, and (68)Ga-PSMA uptake, respectively, and might therefore serve as an additional surrogate parameter for differentiating between malignant and benign LNs. The use of a 7.5-Hounsfield unit CT density threshold to differentiate between malignant and benign LN infiltration and 20 Hounsfield units to exclude benign LN processes might be possible in clinical routine and would be especially helpful for PET-indeterminate LNs.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Schneider, Florian
|b 1
700 1 _ |a Kratochwil, Clemens
|b 2
700 1 _ |a Rath, Daniel
|b 3
700 1 _ |a Moltz, Jan
|b 4
700 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 5
700 1 _ |a Kauczor, Hans-Ulrich
|0 P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769
|b 6
700 1 _ |a Schwartz, Lawrence H
|b 7
700 1 _ |a Haberkorn, Uwe
|0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|b 8
700 1 _ |a Flechsig, Paul
|b 9
773 _ _ |a 10.2967/jnumed.116.179648
|g Vol. 58, no. 2, p. 282 - 287
|0 PERI:(DE-600)2040222-3
|n 2
|p 282 - 287
|t Journal of nuclear medicine
|v 58
|y 2017
|x 2159-662X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:119331
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-He78)cdb6ba5e925fa050ebfa816181cf5769
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2015
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l E060 KKE Nuklearmedizin
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21