001     119334
005     20240228145433.0
024 7 _ |2 doi
|a 10.1016/j.ymeth.2016.09.014
024 7 _ |2 pmid
|a pmid:27725304
024 7 _ |2 ISSN
|a 1046-2023
024 7 _ |2 ISSN
|a 1095-9130
024 7 _ |a altmetric:13072940
|2 altmetric
037 _ _ |a DKFZ-2017-00089
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |a Gunkel, Manuel
|b 0
245 _ _ |a Quantification of telomere features in tumor tissue sections by an automated 3D imaging-based workflow.2
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1511273187_9921
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The microscopic analysis of telomere features provides a wealth of information on the mechanism by which tumor cells maintain their unlimited proliferative potential. Accordingly, the analysis of telomeres in tissue sections of patient tumor samples can be exploited to obtain diagnostic information and to define tumor subgroups. In many instances, however, analysis of the image data is conducted by manual inspection of 2D images at relatively low resolution for only a small part of the sample. As the telomere feature signal distribution is frequently heterogeneous, this approach is prone to a biased selection of the information present in the image and lacks subcellular details. Here we address these issues by using an automated high-resolution imaging and analysis workflow that quantifies individual telomere features on tissue sections for a large number of cells. The approach is particularly suited to assess telomere heterogeneity and low abundant cellular subpopulations with distinct telomere characteristics in a reproducible manner. It comprises the integration of multi-color fluorescence in situ hybridization, immunofluorescence and DNA staining with targeted automated 3D fluorescence microscopy and image analysis. We apply our method to telomeres in glioblastoma and prostate cancer samples, and describe how the imaging data can be used to derive statistically reliable information on telomere length distribution or colocalization with PML nuclear bodies. We anticipate that relating this approach to clinical outcome data will prove to be valuable for pretherapeutic patient stratification.
536 _ _ |0 G:(DE-HGF)POF3-312
|a 312 - Functional and structural genomics (POF3-312)
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |0 P:(DE-He78)d1a346df2019a0c0fd79b4808e502cee
|a Chung, Inn
|b 1
|u dkfz
700 1 _ |0 P:(DE-He78)6dfd570c2b4fafb29ab11b616c6c2285
|a Wörz, Stefan
|b 2
|u dkfz
700 1 _ |0 P:(DE-He78)307c43dc6b7bbf6ca6c8a29fdeb01851
|a Deeg, Katharina
|b 3
|u dkfz
700 1 _ |a Simon, Ronald
|b 4
700 1 _ |a Sauter, Guido
|b 5
700 1 _ |0 P:(DE-He78)551bb92841f634070997aa168d818492
|a Jones, David
|b 6
|u dkfz
700 1 _ |0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|a Korshunov, Andrey
|b 7
|u dkfz
700 1 _ |0 P:(DE-He78)f1db1035ee9130131effb4f2f60553ae
|a Rohr, Karl
|b 8
|u dkfz
700 1 _ |a Erfle, Holger
|b 9
700 1 _ |0 P:(DE-He78)94de5f7413279464b6e738d91dfae1eb
|a Rippe, Karsten
|b 10
|e Last author
|u dkfz
773 _ _ |0 PERI:(DE-600)1471152-7
|a 10.1016/j.ymeth.2016.09.014
|g Vol. 114, p. 60 - 73
|p 60 - 73
|t Methods
|v 114
|x 1046-2023
|y 2017
909 C O |o oai:inrepo02.dkfz.de:119334
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)d1a346df2019a0c0fd79b4808e502cee
|a Deutsches Krebsforschungszentrum
|b 1
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)6dfd570c2b4fafb29ab11b616c6c2285
|a Deutsches Krebsforschungszentrum
|b 2
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)307c43dc6b7bbf6ca6c8a29fdeb01851
|a Deutsches Krebsforschungszentrum
|b 3
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)551bb92841f634070997aa168d818492
|a Deutsches Krebsforschungszentrum
|b 6
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|a Deutsches Krebsforschungszentrum
|b 7
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)f1db1035ee9130131effb4f2f60553ae
|a Deutsches Krebsforschungszentrum
|b 8
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)94de5f7413279464b6e738d91dfae1eb
|a Deutsches Krebsforschungszentrum
|b 10
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-312
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|a DE-HGF
|l Krebsforschung
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b METHODS : 2015
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l Genomorganisation und Funktion
|x 0
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 1
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 2
920 1 _ |0 I:(DE-He78)G380-20160331
|k G380
|l KKE Neuropathologie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)G380-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21