000119362 001__ 119362
000119362 005__ 20240228145435.0
000119362 0247_ $$2doi$$a10.1002/jmri.25364
000119362 0247_ $$2pmid$$apmid:27421080
000119362 0247_ $$2ISSN$$a1053-1807
000119362 0247_ $$2ISSN$$a1522-2586
000119362 0247_ $$2altmetric$$aaltmetric:9730341
000119362 037__ $$aDKFZ-2017-00117
000119362 041__ $$aeng
000119362 082__ $$a610
000119362 1001_ $$0P:(DE-He78)fc914442d48a580859dd8e11a49788ea$$aStahl, Vanessa$$b0$$eFirst author$$udkfz
000119362 245__ $$aIn vivo assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI.E
000119362 260__ $$aNew York, NY$$bWiley-Liss$$c2017
000119362 3367_ $$2DRIVER$$aarticle
000119362 3367_ $$2DataCite$$aOutput Types/Journal article
000119362 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511271253_9921
000119362 3367_ $$2BibTeX$$aARTICLE
000119362 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119362 3367_ $$00$$2EndNote$$aJournal Article
000119362 520__ $$aTo evaluate the volume and changes of human brown adipose tissue (BAT) in vivo following exposure to cold using magnetic resonance imaging (MRI).The clavicular region of 10 healthy volunteers was examined with a 3T MRI system. One volunteer participated twice. A cooling vest that was circulated with temperature-controlled water was used to expose each volunteer to a cold environment. Three different water temperature phases were employed: baseline (23°C, 20 min), cooling (12°C, 90 min), and a final warming phase (37°C, 30 min). Temperatures of the water in the circuit, of the body, and at the back skin of the volunteers were monitored with fiberoptic temperature probes. Applying the 2-point DIXON pulse sequence every 5 minutes, fat fraction (FF) maps were determined and evaluated over time to distinguish between brown and white adipose tissue.Temperature measurements showed a decrease of 3.8 ± 1.0°C of the back skin temperature, while the body temperature stayed constant at 37.2 ± 0.9°C. Focusing on the two interscapular BAT depots, a mean FF decrease of -2.9 ± 2.0%/h (P < 0.001) was detected during cold stimulation in a mean absolute volume of 1.31 ± 1.43 ml. Also, a correlation of FF decrease to back skin temperature decrease was observed in all volunteers (correlation coefficients: |r| = [0.51; 0.99]).We found that FF decreases in BAT begin immediately with mild cooling of the body and continue during long-time cooling.2 J. Magn. Reson. Imaging 2017;45:369-380.
000119362 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000119362 588__ $$aDataset connected to CrossRef, PubMed,
000119362 7001_ $$0P:(DE-He78)4b912fbf89e1e4d1c8eb72b0ea07683a$$aMaier, Florian$$b1$$udkfz
000119362 7001_ $$0P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aFreitag, Martin$$b2$$udkfz
000119362 7001_ $$0P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aFloca, Ralf Omar$$b3$$udkfz
000119362 7001_ $$0P:(DE-He78)1853b0910e3b2c3fd4c63b53dd5410de$$aBerger, Moritz$$b4$$udkfz
000119362 7001_ $$0P:(DE-He78)b8678d0841b587098d787b52c38ba439$$aUmathum, Reiner$$b5$$udkfz
000119362 7001_ $$aBerriel Diaz, Mauricio$$b6
000119362 7001_ $$aHerzig, Stephan$$b7
000119362 7001_ $$aWeber, Marc-André$$b8
000119362 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b9$$udkfz
000119362 7001_ $$0P:(DE-He78)d1b978ca4a7974cc7fdd52c7db0aa9fd$$aRink, Kristian$$b10$$udkfz
000119362 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b11$$udkfz
000119362 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b12$$udkfz
000119362 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b13$$eLast author$$udkfz
000119362 773__ $$0PERI:(DE-600)1497154-9$$a10.1002/jmri.25364$$gVol. 45, no. 2, p. 369 - 380$$n2$$p369 - 380$$tJournal of magnetic resonance imaging$$v45$$x1053-1807$$y2017
000119362 909CO $$ooai:inrepo02.dkfz.de:119362$$pVDB
000119362 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000119362 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON IMAGING : 2015
000119362 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119362 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119362 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119362 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119362 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119362 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119362 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000119362 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119362 9141_ $$y2017
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fc914442d48a580859dd8e11a49788ea$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b912fbf89e1e4d1c8eb72b0ea07683a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1853b0910e3b2c3fd4c63b53dd5410de$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b8678d0841b587098d787b52c38ba439$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d1b978ca4a7974cc7fdd52c7db0aa9fd$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000119362 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000119362 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000119362 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000119362 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x1
000119362 9201_ $$0I:(DE-He78)E071-20160331$$kE071$$lSoftwareentwicklung für Integrierte Diagnostik und Therapie(SIDT)$$x2
000119362 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lKKE Nuklearmedizin$$x3
000119362 980__ $$ajournal
000119362 980__ $$aVDB
000119362 980__ $$aI:(DE-He78)E020-20160331
000119362 980__ $$aI:(DE-He78)E010-20160331
000119362 980__ $$aI:(DE-He78)E071-20160331
000119362 980__ $$aI:(DE-He78)E060-20160331
000119362 980__ $$aUNRESTRICTED