000119649 001__ 119649
000119649 005__ 20240228134947.0
000119649 0247_ $$2doi$$a10.1371/journal.pcbi.1003795
000119649 0247_ $$2pmid$$apmid:25188314
000119649 0247_ $$2pmc$$apmc:PMC4154640
000119649 0247_ $$2ISSN$$a1553-734X
000119649 0247_ $$2ISSN$$a1553-7358
000119649 0247_ $$2altmetric$$aaltmetric:2655396
000119649 037__ $$aDKFZ-2017-00280
000119649 041__ $$aeng
000119649 082__ $$a570
000119649 1001_ $$0P:(DE-HGF)0$$aBernardo-Faura, Marti$$b0$$eFirst author
000119649 245__ $$aData-derived modeling characterizes plasticity of MAPK signaling in melanoma.
000119649 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2014
000119649 3367_ $$2DRIVER$$aarticle
000119649 3367_ $$2DataCite$$aOutput Types/Journal article
000119649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1488457729_15799
000119649 3367_ $$2BibTeX$$aARTICLE
000119649 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119649 3367_ $$00$$2EndNote$$aJournal Article
000119649 520__ $$aThe majority of melanomas have been shown to harbor somatic mutations in the RAS-RAF-MEK-MAPK and PI3K-AKT pathways, which play a major role in regulation of proliferation and survival. The prevalence of these mutations makes these kinase signal transduction pathways an attractive target for cancer therapy. However, tumors have generally shown adaptive resistance to treatment. This adaptation is achieved in melanoma through its ability to undergo neovascularization, migration and rearrangement of signaling pathways. To understand the dynamic, nonlinear behavior of signaling pathways in cancer, several computational modeling approaches have been suggested. Most of those models require that the pathway topology remains constant over the entire observation period. However, changes in topology might underlie adaptive behavior to drug treatment. To study signaling rearrangements, here we present a new approach based on Fuzzy Logic (FL) that predicts changes in network architecture over time. This adaptive modeling approach was used to investigate pathway dynamics in a newly acquired experimental dataset describing total and phosphorylated protein signaling over four days in A375 melanoma cell line exposed to different kinase inhibitors. First, a generalized strategy was established to implement a parameter-reduced FL model encoding non-linear activity of a signaling network in response to perturbation. Next, a literature-based topology was generated and parameters of the FL model were derived from the full experimental dataset. Subsequently, the temporal evolution of model performance was evaluated by leaving time-defined data points out of training. Emerging discrepancies between model predictions and experimental data at specific time points allowed the characterization of potential network rearrangement. We demonstrate that this adaptive FL modeling approach helps to enhance our mechanistic understanding of the molecular plasticity of melanoma.
000119649 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000119649 588__ $$aDataset connected to CrossRef, PubMed,
000119649 7001_ $$0P:(DE-HGF)0$$aMassen, Stefan$$b1
000119649 7001_ $$aFalk, Christine S$$b2
000119649 7001_ $$0P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aBrady, Nathan$$b3$$udkfz
000119649 7001_ $$0P:(DE-He78)78b6aa82148e60b4d91e3a37a6d3d9a0$$aEils, Roland$$b4$$eLast author$$udkfz
000119649 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1003795$$gVol. 10, no. 9, p. e1003795 -$$n9$$pe1003795 -$$tPLoS Computational Biology$$v10$$x1553-7358$$y2014
000119649 909CO $$ooai:inrepo02.dkfz.de:119649$$pVDB
000119649 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119649 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000119649 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000119649 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)78b6aa82148e60b4d91e3a37a6d3d9a0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000119649 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000119649 9141_ $$y2014
000119649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2015
000119649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119649 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000119649 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000119649 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000119649 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000119649 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000119649 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000119649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119649 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119649 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119649 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119649 9201_ $$0I:(DE-He78)B080-20160331$$kB080$$lTheoretische Bioinformatik$$x0
000119649 9201_ $$0I:(DE-He78)B170-20160331$$kB170$$lSystembiologie von Zelltod-Mechanismen$$x1
000119649 980__ $$ajournal
000119649 980__ $$aVDB
000119649 980__ $$aI:(DE-He78)B080-20160331
000119649 980__ $$aI:(DE-He78)B170-20160331
000119649 980__ $$aUNRESTRICTED