000119665 001__ 119665
000119665 005__ 20240228134948.0
000119665 0247_ $$2doi$$a10.1038/srep07531
000119665 0247_ $$2pmid$$apmid:25519916
000119665 0247_ $$2pmc$$apmc:PMC4269881
000119665 0247_ $$2altmetric$$aaltmetric:3000152
000119665 037__ $$aDKFZ-2017-00296
000119665 041__ $$aeng
000119665 082__ $$a000
000119665 1001_ $$0P:(DE-HGF)0$$aBlasche, Sonja$$b0$$eFirst author
000119665 245__ $$aThe EHEC-host interactome reveals novel targets for the translocated intimin receptor.
000119665 260__ $$aLondon$$bNature Publishing Group$$c2014
000119665 3367_ $$2DRIVER$$aarticle
000119665 3367_ $$2DataCite$$aOutput Types/Journal article
000119665 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520587178_3333
000119665 3367_ $$2BibTeX$$aARTICLE
000119665 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119665 3367_ $$00$$2EndNote$$aJournal Article
000119665 520__ $$aEnterohemorrhagic E. coli (EHEC) manipulate their human host through at least 39 effector proteins which hijack host processes through direct protein-protein interactions (PPIs). To identify their protein targets in the host cells, we performed yeast two-hybrid screens, allowing us to find 48 high-confidence protein-protein interactions between 15 EHEC effectors and 47 human host proteins. In comparison to other bacteria and viruses we found that EHEC effectors bind more frequently to hub proteins as well as to proteins that participate in a higher number of protein complexes. The data set includes six new interactions that involve the translocated intimin receptor (TIR), namely HPCAL1, HPCAL4, NCALD, ARRB1, PDE6D, and STK16. We compared these TIR interactions in EHEC and enteropathogenic E. coli (EPEC) and found that five interactions were conserved. Notably, the conserved interactions included those of serine/threonine kinase 16 (STK16), hippocalcin-like 1 (HPCAL1) as well as neurocalcin-delta (NCALD). These proteins co-localize with the infection sites of EPEC. Furthermore, our results suggest putative functions of poorly characterized effectors (EspJ, EspY1). In particular, we observed that EspJ is connected to the microtubule system while EspY1 appears to be involved in apoptosis/cell cycle regulation.
000119665 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000119665 588__ $$aDataset connected to CrossRef, PubMed,
000119665 650_7 $$2NLM Chemicals$$aAdhesins, Bacterial
000119665 650_7 $$2NLM Chemicals$$aEscherichia coli Proteins
000119665 650_7 $$2NLM Chemicals$$aEspJ protein, E coli
000119665 650_7 $$2NLM Chemicals$$aHPCAL1 protein, human
000119665 650_7 $$2NLM Chemicals$$aNCALD protein, human
000119665 650_7 $$2NLM Chemicals$$aNeurocalcin
000119665 650_7 $$2NLM Chemicals$$aReceptors, Cell Surface
000119665 650_7 $$2NLM Chemicals$$aTir protein, E coli
000119665 650_7 $$2NLM Chemicals$$aTranscription Factors
000119665 650_7 $$0147094-99-3$$2NLM Chemicals$$aeaeA protein, E coli
000119665 650_7 $$0EC 2.7.11.1$$2NLM Chemicals$$aProtein-Serine-Threonine Kinases
000119665 650_7 $$0EC 2.7.11.1$$2NLM Chemicals$$aSTK16 protein, human
000119665 7001_ $$aArens, Stefan$$b1
000119665 7001_ $$aCeol, Arnaud$$b2
000119665 7001_ $$0P:(DE-HGF)0$$aSiszler, Gabriella$$b3
000119665 7001_ $$aSchmidt, M Alexander$$b4
000119665 7001_ $$0P:(DE-HGF)0$$aHäuser, Roman$$b5
000119665 7001_ $$0P:(DE-He78)16e91871b8403eb9e93080b2ff38c0a2$$aSchwarz, Frank$$b6$$udkfz
000119665 7001_ $$aWuchty, Stefan$$b7
000119665 7001_ $$aAloy, Patrick$$b8
000119665 7001_ $$aUetz, Peter$$b9
000119665 7001_ $$aStradal, Theresia$$b10
000119665 7001_ $$0P:(DE-HGF)0$$aKoegl, Manfred$$b11$$eLast author
000119665 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep07531$$gVol. 4, p. 7531 -$$p7531 -$$tScientific reports$$v4$$x2045-2322$$y2014
000119665 909CO $$ooai:inrepo02.dkfz.de:119665$$pVDB
000119665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000119665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000119665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)16e91871b8403eb9e93080b2ff38c0a2$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000119665 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000119665 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000119665 9141_ $$y2014
000119665 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000119665 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119665 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119665 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000119665 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000119665 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000119665 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000119665 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119665 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119665 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119665 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119665 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000119665 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000119665 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119665 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000119665 9201_ $$0I:(DE-He78)W150-20160331$$kW150$$lProteininteraktion$$x0
000119665 980__ $$ajournal
000119665 980__ $$aVDB
000119665 980__ $$aI:(DE-He78)W150-20160331
000119665 980__ $$aUNRESTRICTED