001     119761
005     20240228134955.0
024 7 _ |a 10.1182/blood-2014-02-555722
|2 doi
024 7 _ |a pmid:24868078
|2 pmid
024 7 _ |a pmc:PMC4125353
|2 pmc
024 7 _ |a 0006-4971
|2 ISSN
024 7 _ |a 1528-0020
|2 ISSN
024 7 _ |a altmetric:2388108
|2 altmetric
037 _ _ |a DKFZ-2017-00388
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Claus, Rainer
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia.
260 _ _ |a Stanford, Calif.
|c 2014
|b HighWire Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1488967355_17423
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ZAP-70 methylation 223 nucleotides downstream of transcription start (CpG+223) predicts outcome in chronic lymphocytic leukemia (CLL), but its impact relative to CD38 and ZAP-70 expression or immunoglobulin heavy chain variable region (IGHV) status is uncertain. Additionally, standardizing ZAP-70 expression analysis has been unsuccessful. CpG+223 methylation was quantitatively determined in 295 untreated CLL cases using MassARRAY. Impact on clinical outcome vs CD38 and ZAP-70 expression and IGHV status was evaluated. Cases with low methylation (<20%) had significantly shortened time to first treatment (TT) and overall survival (OS) (P < .0001). For TT, low methylation defined a large subset of ZAP-70 protein-negative cases with significantly shortened TT (median, 8.0 vs 3.9 years for high vs low methylation; hazard ratio [HR] = 0.43; 95% confidence interval [CI], 0.25-0.74). Conversely, 16 ZAP-70 protein-positive cases with high methylation had poor outcome (median, 1.1 vs 2.3 years for high vs low methylation; HR = 1.62; 95% CI, 0.87-3.03). For OS, ZAP-70 methylation was the strongest risk factor; CD38 and ZAP-70 expression or IGHV status did not significantly improve OS prediction. A pyrosequencing assay was established that reproduced the MassARRAY data (κ coefficient > 0.90). Thus, ZAP-70 CpG+223 methylation represents a superior biomarker for TT and OS that can be feasibly measured, supporting its use in risk-stratifying CLL.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Biomarkers, Tumor
|2 NLM Chemicals
650 _ 7 |a Immunoglobulin Variable Region
|2 NLM Chemicals
650 _ 7 |a ZAP-70 Protein-Tyrosine Kinase
|0 EC 2.7.10.2
|2 NLM Chemicals
650 _ 7 |a ZAP70 protein, human
|0 EC 2.7.10.2
|2 NLM Chemicals
700 1 _ |a Lucas, David M
|b 1
700 1 _ |a Ruppert, Amy S
|b 2
700 1 _ |a Williams, Katie E
|b 3
700 1 _ |a Weng, Daniel
|b 4
700 1 _ |a Patterson, Kara
|b 5
700 1 _ |a Zucknick, Manuela
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Oakes, Christopher C
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rassenti, Laura Z
|b 8
700 1 _ |a Greaves, Andrew W
|b 9
700 1 _ |a Geyer, Susan
|b 10
700 1 _ |a Wierda, William G
|b 11
700 1 _ |a Brown, Jennifer R
|b 12
700 1 _ |a Gribben, John G
|b 13
700 1 _ |a Barrientos, Jacqueline C
|b 14
700 1 _ |a Rai, Kanti R
|b 15
700 1 _ |a Kay, Neil E
|b 16
700 1 _ |a Kipps, Thomas J
|b 17
700 1 _ |a Shields, Peter
|b 18
700 1 _ |a Zhao, Weiqiang
|b 19
700 1 _ |a Grever, Michael R
|b 20
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 21
|u dkfz
700 1 _ |a Byrd, John C
|b 22
773 _ _ |a 10.1182/blood-2014-02-555722
|g Vol. 124, no. 1, p. 42 - 48
|0 PERI:(DE-600)1468538-3
|n 1
|p 42 - 48
|t Blood
|v 124
|y 2014
|x 1528-0020
909 C O |o oai:inrepo02.dkfz.de:119761
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BLOOD : 2015
920 1 _ |0 I:(DE-He78)C010-20160331
|k C010
|l Epigenomik und Krebsrisikofaktoren
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21