000119769 001__ 119769 000119769 005__ 20240228134955.0 000119769 0247_ $$2doi$$a10.1016/j.chemphyslip.2014.04.001 000119769 0247_ $$2pmid$$apmid:24732580 000119769 0247_ $$2ISSN$$a0009-3084 000119769 0247_ $$2ISSN$$a1873-2941 000119769 037__ $$aDKFZ-2017-00396 000119769 041__ $$aeng 000119769 082__ $$a540 000119769 1001_ $$0P:(DE-HGF)0$$aCosentino, Katia$$b0$$eFirst author 000119769 245__ $$aMitochondrial alterations in apoptosis. 000119769 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014 000119769 3367_ $$2DRIVER$$aarticle 000119769 3367_ $$2DataCite$$aOutput Types/Journal article 000119769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1488969406_17424$$xReview Article 000119769 3367_ $$2BibTeX$$aARTICLE 000119769 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000119769 3367_ $$00$$2EndNote$$aJournal Article 000119769 520__ $$aBesides their conventional role as energy suppliers for the cell, mitochondria in vertebrates are active regulators of apoptosis. They release apoptotic factors from the intermembrane space into the cytosol through a mechanism that involves the Bcl-2 protein family, mediating permeabilization of the outer mitochondrial membrane. Associated with this event, a number of additional changes affect mitochondria during apoptosis. They include loss of important mitochondrial functions, such as the ability to maintain calcium homeostasis and to generate ATP, as well as mitochondrial fragmentation and cristae remodeling. Moreover, the lipidic component of mitochondrial membranes undergoes important alterations in composition and distribution, which have turned out to be relevant regulatory events for the proteins involved in apoptotic mitochondrial damage. 000119769 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0 000119769 588__ $$aDataset connected to CrossRef, PubMed, 000119769 650_7 $$09007-43-6$$2NLM Chemicals$$aCytochromes c 000119769 7001_ $$0P:(DE-HGF)0$$aGarcía-Sáez, Ana J$$b1$$eLast author 000119769 773__ $$0PERI:(DE-600)1496839-3$$a10.1016/j.chemphyslip.2014.04.001$$gVol. 181, p. 62 - 75$$p62 - 75$$tChemistry and physics of lipids$$v181$$x0009-3084$$y2014 000119769 909CO $$ooai:inrepo02.dkfz.de:119769$$pVDB 000119769 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000119769 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000119769 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0 000119769 9141_ $$y2014 000119769 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000119769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM PHYS LIPIDS : 2015 000119769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000119769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000119769 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000119769 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000119769 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000119769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000119769 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000119769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000119769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000119769 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000119769 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000119769 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000119769 9201_ $$0I:(DE-He78)B160-20160331$$kB160$$lMembranbiophysik$$x0 000119769 980__ $$ajournal 000119769 980__ $$aVDB 000119769 980__ $$aI:(DE-He78)B160-20160331 000119769 980__ $$aUNRESTRICTED