000119769 001__ 119769
000119769 005__ 20240228134955.0
000119769 0247_ $$2doi$$a10.1016/j.chemphyslip.2014.04.001
000119769 0247_ $$2pmid$$apmid:24732580
000119769 0247_ $$2ISSN$$a0009-3084
000119769 0247_ $$2ISSN$$a1873-2941
000119769 037__ $$aDKFZ-2017-00396
000119769 041__ $$aeng
000119769 082__ $$a540
000119769 1001_ $$0P:(DE-HGF)0$$aCosentino, Katia$$b0$$eFirst author
000119769 245__ $$aMitochondrial alterations in apoptosis.
000119769 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000119769 3367_ $$2DRIVER$$aarticle
000119769 3367_ $$2DataCite$$aOutput Types/Journal article
000119769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1488969406_17424$$xReview Article
000119769 3367_ $$2BibTeX$$aARTICLE
000119769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119769 3367_ $$00$$2EndNote$$aJournal Article
000119769 520__ $$aBesides their conventional role as energy suppliers for the cell, mitochondria in vertebrates are active regulators of apoptosis. They release apoptotic factors from the intermembrane space into the cytosol through a mechanism that involves the Bcl-2 protein family, mediating permeabilization of the outer mitochondrial membrane. Associated with this event, a number of additional changes affect mitochondria during apoptosis. They include loss of important mitochondrial functions, such as the ability to maintain calcium homeostasis and to generate ATP, as well as mitochondrial fragmentation and cristae remodeling. Moreover, the lipidic component of mitochondrial membranes undergoes important alterations in composition and distribution, which have turned out to be relevant regulatory events for the proteins involved in apoptotic mitochondrial damage.
000119769 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000119769 588__ $$aDataset connected to CrossRef, PubMed,
000119769 650_7 $$09007-43-6$$2NLM Chemicals$$aCytochromes c
000119769 7001_ $$0P:(DE-HGF)0$$aGarcía-Sáez, Ana J$$b1$$eLast author
000119769 773__ $$0PERI:(DE-600)1496839-3$$a10.1016/j.chemphyslip.2014.04.001$$gVol. 181, p. 62 - 75$$p62 - 75$$tChemistry and physics of lipids$$v181$$x0009-3084$$y2014
000119769 909CO $$ooai:inrepo02.dkfz.de:119769$$pVDB
000119769 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119769 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000119769 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000119769 9141_ $$y2014
000119769 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000119769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM PHYS LIPIDS : 2015
000119769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119769 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000119769 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000119769 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000119769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119769 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119769 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000119769 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119769 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119769 9201_ $$0I:(DE-He78)B160-20160331$$kB160$$lMembranbiophysik$$x0
000119769 980__ $$ajournal
000119769 980__ $$aVDB
000119769 980__ $$aI:(DE-He78)B160-20160331
000119769 980__ $$aUNRESTRICTED