000119784 001__ 119784
000119784 005__ 20240228145440.0
000119784 0247_ $$2doi$$a10.1002/mrm.26206
000119784 0247_ $$2pmid$$apmid:26991911
000119784 0247_ $$2ISSN$$a0740-3194
000119784 0247_ $$2ISSN$$a1522-2594
000119784 0247_ $$2altmetric$$aaltmetric:6241561
000119784 037__ $$aDKFZ-2017-00411
000119784 041__ $$aeng
000119784 082__ $$a610
000119784 1001_ $$0P:(DE-He78)65dc5d2a03aac87b199cba2986986d05$$aRank, Christopher$$b0$$eFirst author$$udkfz
000119784 245__ $$a4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling.
000119784 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2017
000119784 3367_ $$2DRIVER$$aarticle
000119784 3367_ $$2DataCite$$aOutput Types/Journal article
000119784 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525769023_10339
000119784 3367_ $$2BibTeX$$aARTICLE
000119784 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119784 3367_ $$00$$2EndNote$$aJournal Article
000119784 500__ $$aE025
000119784 520__ $$aTo develop four-dimensional (4D) respiratory time-resolved MRI based on free-breathing acquisition of radial MR data with very high undersampling.We propose the 4D joint motion-compensated high-dimensional total variation (4D joint MoCo-HDTV) algorithm, which alternates between motion-compensated image reconstruction and artifact-robust motion estimation at multiple resolution levels. The algorithm is applied to radial MR data of the thorax and upper abdomen of 12 free-breathing subjects with acquisition times between 37 and 41 s and undersampling factors of 16.8. Resulting images are compared with compressed sensing-based 4D motion-adaptive spatio-temporal regularization (MASTeR) and 4D high-dimensional total variation (HDTV) reconstructions.For all subjects, 4D joint MoCo-HDTV achieves higher similarity in terms of normalized mutual information and cross-correlation than 4D MASTeR and 4D HDTV when compared with reference 4D gated gridding reconstructions with 8.4 ± 1.1 times longer acquisition times. In a qualitative assessment of artifact level and image sharpness by two radiologists, 4D joint MoCo-HDTV reveals higher scores (P < 0.05) than 4D HDTV and 4D MASTeR at the same undersampling factor and the reference 4D gated gridding reconstructions, respectively.4D joint MoCo-HDTV enables time-resolved image reconstruction of free-breathing radial MR data with undersampling factors of 16.8 while achieving low-streak artifact levels and high image sharpness. Magn Reson Med 77:1170-1183, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
000119784 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000119784 588__ $$aDataset connected to CrossRef, PubMed,
000119784 7001_ $$0P:(DE-He78)a00a109668c5fdbeea213d6981588250$$aHeußer, Thorsten$$b1$$udkfz
000119784 7001_ $$aBuzan, Maria T A$$b2
000119784 7001_ $$0P:(DE-HGF)0$$aWetscherek, Andreas$$b3
000119784 7001_ $$0P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aFreitag, Martin$$b4$$udkfz
000119784 7001_ $$aDinkel, Julien$$b5
000119784 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelrieß, Marc$$b6$$eLast author$$udkfz
000119784 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.26206$$gVol. 77, no. 3, p. 1170 - 1183$$n3$$p1170 - 1183$$tMagnetic resonance in medicine$$v77$$x0740-3194$$y2017
000119784 909CO $$ooai:inrepo02.dkfz.de:119784$$pVDB
000119784 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)65dc5d2a03aac87b199cba2986986d05$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119784 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a00a109668c5fdbeea213d6981588250$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000119784 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000119784 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000119784 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000119784 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000119784 9141_ $$y2017
000119784 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000119784 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2015
000119784 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119784 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119784 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119784 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119784 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119784 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119784 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000119784 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000119784 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119784 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119784 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000119784 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lRadiologie_Legacy_$$x1
000119784 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x2
000119784 980__ $$ajournal
000119784 980__ $$aVDB
000119784 980__ $$aI:(DE-He78)E020-20160331
000119784 980__ $$aI:(DE-He78)E025-20160331
000119784 980__ $$aI:(DE-He78)E010-20160331
000119784 980__ $$aUNRESTRICTED