001     119792
005     20240228145441.0
024 7 _ |a 10.1016/j.mri.2016.11.013
|2 doi
024 7 _ |a pmid:27871865
|2 pmid
024 7 _ |a 0730-725X
|2 ISSN
024 7 _ |a 1873-5894
|2 ISSN
024 7 _ |a altmetric:14426699
|2 altmetric
037 _ _ |a DKFZ-2017-00419
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Rink, Kristian
|0 P:(DE-He78)d1b978ca4a7974cc7fdd52c7db0aa9fd
|b 0
|e First author
|u dkfz
245 _ _ |a Iterative reconstruction of radially-sampled (31)P bSSFP data using prior information from (1)H MRI.
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510836814_26037
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The purpose of this study is to improve direct phosphorus ((31)P) MR imaging. Therefore, 3D density-adapted radially-sampled balanced steady-state free precession (bSSFP) sequences were developed and an iterative approach exploiting additional anatomical information from hydrogen ((1)H) data was evaluated. Three healthy volunteers were examined at B0=7T in order to obtain the spatial distribution of the phosphocreatine (PCr) intensities in the human calf muscle with a nominal isotropic resolution of 10mm in an acquisition time of 10min. Three different bSSFP gradient schemes were investigated. The highest signal-to-noise ratio (SNR) was obtained for a scheme with two point-reflected density-adapted gradients. Furthermore, the conventional reconstruction based on a gridding algorithm was compared to an iterative method using an (1)H MRI constraint in terms of a segmented binary mask, which comprises prior knowledge. The parameters of the iterative approach were optimized and evaluated by simulations featuring (31)P MRI parameters. Thereby, partial volume effects as well as Gibbs ringing artifacts could be reduced. In conclusion, the iterative reconstruction of (31)P bSSFP data using an (1)H MRI constraint is appropriate for investigating regions where sharp tissue boundaries occur and leads to images that represent the real PCr distributions better than conventionally reconstructed images.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Benkhedah, Nadia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Berger, Moritz
|0 P:(DE-He78)1853b0910e3b2c3fd4c63b53dd5410de
|b 2
|u dkfz
700 1 _ |a Gnahm, Christine
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Behl, Nicolas
|0 P:(DE-He78)596c7f2f2a07a37019b79f94ad8a4190
|b 4
|u dkfz
700 1 _ |a Lommen, Jonathan
|0 P:(DE-He78)b1993ad043211815ad62d0c3de882b39
|b 5
|u dkfz
700 1 _ |a Stahl, Vanessa
|0 P:(DE-He78)fc914442d48a580859dd8e11a49788ea
|b 6
|u dkfz
700 1 _ |a Bachert, Peter
|0 P:(DE-He78)29b2f01310f7022916255ddba2750f9b
|b 7
|u dkfz
700 1 _ |a Ladd, Mark
|0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
|b 8
|u dkfz
700 1 _ |a Nagel, Armin
|0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.mri.2016.11.013
|g Vol. 37, p. 147 - 158
|0 PERI:(DE-600)1500646-3
|p 147 - 158
|t Magnetic resonance imaging
|v 37
|y 2017
|x 0730-725X
909 C O |o oai:inrepo02.dkfz.de:119792
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d1b978ca4a7974cc7fdd52c7db0aa9fd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1853b0910e3b2c3fd4c63b53dd5410de
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)596c7f2f2a07a37019b79f94ad8a4190
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)b1993ad043211815ad62d0c3de882b39
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)fc914442d48a580859dd8e11a49788ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)29b2f01310f7022916255ddba2750f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON IMAGING : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l Medizinische Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21