000119835 001__ 119835
000119835 005__ 20240228145441.0
000119835 0247_ $$2doi$$a10.1103/PhysRevE.95.022404
000119835 0247_ $$2pmid$$apmid:28298006
000119835 0247_ $$2ISSN$$a1063-651X
000119835 0247_ $$2ISSN$$a1095-3787
000119835 0247_ $$2ISSN$$a1539-3755
000119835 0247_ $$2ISSN$$a1550-2376
000119835 0247_ $$2ISSN$$a2470-0045
000119835 0247_ $$2ISSN$$a2470-0053
000119835 0247_ $$2altmetric$$aaltmetric:18241444
000119835 037__ $$aDKFZ-2017-00430
000119835 041__ $$aeng
000119835 082__ $$a530
000119835 1001_ $$0P:(DE-He78)aa84454ebf16fe6f9b550b2b6731ad91$$aDemberg, Kerstin$$b0$$eFirst author$$udkfz
000119835 245__ $$aNuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding.
000119835 260__ $$aWoodbury, NY$$bInst.$$c2017
000119835 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2017-02-13
000119835 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2017-02-01
000119835 3367_ $$2DRIVER$$aarticle
000119835 3367_ $$2DataCite$$aOutput Types/Journal article
000119835 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510057805_26477
000119835 3367_ $$2BibTeX$$aARTICLE
000119835 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119835 3367_ $$00$$2EndNote$$aJournal Article
000119835 520__ $$aDiffusion pore imaging is an extension of diffusion-weighted nuclear magnetic resonance imaging enabling the direct measurement of the shape of arbitrarily formed, closed pores by probing diffusion restrictions using the motion of spin-bearing particles. Examples of such pores comprise cells in biological tissue or oil containing cavities in porous rocks. All pores contained in the measurement volume contribute to one reconstructed image, which reduces the problem of vanishing signal at increasing resolution present in conventional magnetic resonance imaging. It has been previously experimentally demonstrated that pore imaging using a combination of a long and a narrow magnetic field gradient pulse is feasible. In this work, an experimental verification is presented showing that pores can be imaged using short gradient pulses only. Experiments were carried out using hyperpolarized xenon gas in well-defined pores. The phase required for pore image reconstruction was retrieved from double diffusion encoded (DDE) measurements, while the magnitude could either be obtained from DDE signals or classical diffusion measurements with single encoding. The occurring image artifacts caused by restrictions of the gradient system, insufficient diffusion time, and by the phase reconstruction approach were investigated. Employing short gradient pulses only is advantageous compared to the initial long-narrow approach due to a more flexible sequence design when omitting the long gradient and due to faster convergence to the diffusion long-time limit, which may enable application to larger pores.
000119835 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000119835 542__ $$2Crossref$$i2017-02-13$$uhttp://link.aps.org/licenses/aps-default-license
000119835 588__ $$aDataset connected to CrossRef, PubMed,
000119835 7001_ $$0P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d$$aLaun, Frederik$$b1$$udkfz
000119835 7001_ $$0P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aWindschuh, Johannes$$b2$$udkfz
000119835 7001_ $$0P:(DE-He78)b8678d0841b587098d787b52c38ba439$$aUmathum, Reiner$$b3$$udkfz
000119835 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b4$$udkfz
000119835 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b5$$eLast author$$udkfz
000119835 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.95.022404$$bAmerican Physical Society (APS)$$d2017-02-13$$n2$$p022404$$tPhysical Review E$$v95$$x2470-0045$$y2017
000119835 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.95.022404$$gVol. 95, no. 2-1, p. 022404$$n2$$p022404$$tPhysical review / E$$v95$$x2470-0045$$y2017
000119835 909CO $$ooai:inrepo02.dkfz.de:119835$$pVDB
000119835 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119835 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119835 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000119835 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000119835 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119835 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119835 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119835 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119835 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000119835 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2015
000119835 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119835 9141_ $$y2017
000119835 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)aa84454ebf16fe6f9b550b2b6731ad91$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000119835 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000119835 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000119835 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b8678d0841b587098d787b52c38ba439$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000119835 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000119835 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000119835 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000119835 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000119835 980__ $$ajournal
000119835 980__ $$aVDB
000119835 980__ $$aI:(DE-He78)E020-20160331
000119835 980__ $$aUNRESTRICTED
000119835 999C5 $$1D. K. Jones$$2Crossref$$oD. K. Jones Diffusion MRI: Theory, Methods, and Applications 2011$$tDiffusion MRI: Theory, Methods, and Applications$$y2011
000119835 999C5 $$1H. Johansen-Berg$$2Crossref$$oH. Johansen-Berg Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy 2009$$tDiffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy$$y2009
000119835 999C5 $$1G. R. Coates$$2Crossref$$oG. R. Coates NMR Logging Principles and Applications 1999$$tNMR Logging Principles and Applications$$y1999
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9780470034590.emrstm0593.pub2
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.42.9.1717
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.2503080811
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.2383050059
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-2141.2011.08658.x
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.12112290
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1097/RLI.0000000000000155
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.96.18.10422
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/nbm.781
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/351467a0
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.1910140303
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.048102
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.86.021906
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.92.022706
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.028101
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.87.030802
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.92.012808
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.25901
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmr.2007.08.002
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.058103
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.24515
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mri.2013.03.027
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jmra.1995.1060
000119835 999C5 $$1P. T. Callaghan$$2Crossref$$oP. T. Callaghan Principles of Nuclear Magnetic Resonance Microscopy 1991$$tPrinciples of Nuclear Magnetic Resonance Microscopy$$y1991
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/B609316G
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.69.629
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.79.1077
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jmra.1996.0013
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jmre.1997.1233
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jmre.1999.1778
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cmr.a.20117
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jmrb.1995.1141
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.93.032401
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmr.2008.07.009
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jmre.1997.1123
000119835 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmr.2011.07.015