000119911 001__ 119911
000119911 005__ 20240228135000.0
000119911 0247_ $$2doi$$a10.1158/1078-0432.CCR-13-2053
000119911 0247_ $$2pmid$$apmid:24300787
000119911 0247_ $$2pmc$$apmc:PMC3962776
000119911 0247_ $$2ISSN$$a1078-0432
000119911 0247_ $$2ISSN$$a1557-3265
000119911 0247_ $$2altmetric$$aaltmetric:1954545
000119911 037__ $$aDKFZ-2017-00502
000119911 041__ $$aeng
000119911 082__ $$a610
000119911 1001_ $$aErdreich-Epstein, Anat$$b0
000119911 245__ $$aPID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas.
000119911 260__ $$aPhiladelphia, Pa. [u.a.]$$bAACR$$c2014
000119911 3367_ $$2DRIVER$$aarticle
000119911 3367_ $$2DataCite$$aOutput Types/Journal article
000119911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490271717_30686
000119911 3367_ $$2BibTeX$$aARTICLE
000119911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119911 3367_ $$00$$2EndNote$$aJournal Article
000119911 520__ $$aWe present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells.Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets, PID1 mRNA was lower in glioblastomas (GBM), the most malignant gliomas, compared with other astrocytomas, oligodendrogliomas and nontumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared with classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients whose tumors had higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in patients with glioma and GBM. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT), and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolaization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT, and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization.These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors.
000119911 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000119911 588__ $$aDataset connected to CrossRef, PubMed,
000119911 650_7 $$2NLM Chemicals$$aCarrier Proteins
000119911 650_7 $$2NLM Chemicals$$aPID1 protein, human
000119911 650_7 $$2NLM Chemicals$$aRNA, Messenger
000119911 7001_ $$aRobison, Nathan$$b1
000119911 7001_ $$aRen, Xiuhai$$b2
000119911 7001_ $$aZhou, Hong$$b3
000119911 7001_ $$aXu, Jingying$$b4
000119911 7001_ $$aDavidson, Tom B$$b5
000119911 7001_ $$aSchur, Mathew$$b6
000119911 7001_ $$aGilles, Floyd H$$b7
000119911 7001_ $$aJi, Lingyun$$b8
000119911 7001_ $$aMalvar, Jemily$$b9
000119911 7001_ $$aShackleford, Gregory M$$b10
000119911 7001_ $$aMargol, Ashley S$$b11
000119911 7001_ $$aKrieger, Mark D$$b12
000119911 7001_ $$aJudkins, Alexander R$$b13
000119911 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b14$$udkfz
000119911 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b15$$udkfz
000119911 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b16$$udkfz
000119911 7001_ $$aSposto, Richard$$b17
000119911 7001_ $$aAsgharzadeh, Shahab$$b18
000119911 7001_ $$aAsgharazadeh, Shahab$$b19
000119911 773__ $$0PERI:(DE-600)2036787-9$$a10.1158/1078-0432.CCR-13-2053$$gVol. 20, no. 4, p. 827 - 836$$n4$$p827 - 836$$tClinical cancer research$$v20$$x1557-3265$$y2014
000119911 909CO $$ooai:inrepo02.dkfz.de:119911$$pVDB
000119911 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000119911 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000119911 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000119911 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000119911 9141_ $$y2014
000119911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIN CANCER RES : 2015
000119911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119911 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000119911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119911 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119911 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119911 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000119911 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119911 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCLIN CANCER RES : 2015
000119911 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000119911 980__ $$ajournal
000119911 980__ $$aVDB
000119911 980__ $$aI:(DE-He78)B062-20160331
000119911 980__ $$aUNRESTRICTED