000119924 001__ 119924
000119924 005__ 20240228135001.0
000119924 0247_ $$2doi$$a10.1091/mbc.E14-05-0962
000119924 0247_ $$2pmid$$apmid:24966171
000119924 0247_ $$2pmc$$apmc:PMC4142621
000119924 0247_ $$2ISSN$$a1044-2030
000119924 0247_ $$2ISSN$$a1059-1524
000119924 0247_ $$2ISSN$$a1939-4586
000119924 0247_ $$2altmetric$$aaltmetric:2797603
000119924 037__ $$aDKFZ-2017-00515
000119924 041__ $$aeng
000119924 082__ $$a570
000119924 1001_ $$aFearnley, Gareth W$$b0
000119924 245__ $$aVEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.
000119924 260__ $$aBethesda, Md.$$bAmerican Society for Cell Biology$$c2014
000119924 3367_ $$2DRIVER$$aarticle
000119924 3367_ $$2DataCite$$aOutput Types/Journal article
000119924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490276916_30632
000119924 3367_ $$2BibTeX$$aARTICLE
000119924 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119924 3367_ $$00$$2EndNote$$aJournal Article
000119924 520__ $$aVascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways.
000119924 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000119924 588__ $$aDataset connected to CrossRef, PubMed,
000119924 650_7 $$2NLM Chemicals$$aATF2 protein, human
000119924 650_7 $$2NLM Chemicals$$aActivating Transcription Factor 2
000119924 650_7 $$2NLM Chemicals$$aProtein Isoforms
000119924 650_7 $$2NLM Chemicals$$aVEGFA protein, human
000119924 650_7 $$2NLM Chemicals$$aVascular Cell Adhesion Molecule-1
000119924 650_7 $$2NLM Chemicals$$aVascular Endothelial Growth Factor A
000119924 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aKDR protein, human
000119924 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aVascular Endothelial Growth Factor Receptor-2
000119924 7001_ $$aOdell, Adam F$$b1
000119924 7001_ $$aLatham, Antony M$$b2
000119924 7001_ $$aMughal, Nadeem A$$b3
000119924 7001_ $$aBruns, Alexander F$$b4
000119924 7001_ $$aBurgoyne, Nicholas J$$b5
000119924 7001_ $$aHomer-Vanniasinkam, Shervanthi$$b6
000119924 7001_ $$aZachary, Ian C$$b7
000119924 7001_ $$0P:(DE-He78)f3bec70c95e9e3dce0f39d54b3843118$$aHollstein, Monica$$b8$$udkfz
000119924 7001_ $$aWheatcroft, Stephen B$$b9
000119924 7001_ $$aPonnambalam, Sreenivasan$$b10
000119924 773__ $$0PERI:(DE-600)1474922-1$$a10.1091/mbc.E14-05-0962$$gVol. 25, no. 16, p. 2509 - 2521$$n16$$p2509 - 2521$$tMolecular biology of the cell$$v25$$x1059-1524$$y2014
000119924 909CO $$ooai:inrepo02.dkfz.de:119924$$pVDB
000119924 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f3bec70c95e9e3dce0f39d54b3843118$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000119924 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000119924 9141_ $$y2014
000119924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL BIOL CELL : 2015
000119924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119924 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000119924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119924 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119924 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119924 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000119924 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119924 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000119924 9201_ $$0I:(DE-He78)C016-20160331$$kC016$$lGenetische Veränderungen bei der Karzinogenese$$x0
000119924 980__ $$ajournal
000119924 980__ $$aVDB
000119924 980__ $$aI:(DE-He78)C016-20160331
000119924 980__ $$aUNRESTRICTED