000119929 001__ 119929
000119929 005__ 20240228135001.0
000119929 0247_ $$2doi$$a10.1161/ATVBAHA.114.304239
000119929 0247_ $$2pmid$$apmid:25147336
000119929 0247_ $$2ISSN$$a1079-5642
000119929 0247_ $$2ISSN$$a1524-4636
000119929 0247_ $$2altmetric$$aaltmetric:2619813
000119929 037__ $$aDKFZ-2017-00520
000119929 041__ $$aeng
000119929 082__ $$a610
000119929 1001_ $$aFeng, Yuxi$$b0
000119929 245__ $$aNucleoside diphosphate kinase B regulates angiogenesis through modulation of vascular endothelial growth factor receptor type 2 and endothelial adherens junction proteins.
000119929 260__ $$aPhiladelphia, Pa.$$bLippincott, Williams & Wilkins$$c2014
000119929 3367_ $$2DRIVER$$aarticle
000119929 3367_ $$2DataCite$$aOutput Types/Journal article
000119929 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1490277890_30672
000119929 3367_ $$2BibTeX$$aARTICLE
000119929 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000119929 3367_ $$00$$2EndNote$$aJournal Article
000119929 520__ $$aNucleoside diphosphate kinase B (NDPKB) participates in the activation of heterotrimeric and monomeric G proteins, which are pivotal mediators in angiogenic signaling. The role of NDPKB in angiogenesis has to date not been defined. Therefore, we analyzed the contribution of NDPKB to angiogenesis and its underlying mechanisms in well-characterized in vivo and in vitro models.Zebrafish embryos were depleted of NDPKB by morpholino-mediated knockdown. These larvae displayed severe malformations specifically in vessels formed by angiogenesis. NDPKB-deficient (NDPKB(-/-)) mice were subjected to oxygen-induced retinopathy. In this model, the number of preretinal neovascularizations in NDPKB(-/-) mice was strongly reduced in comparison with wild-type littermates. In accordance, a delayed blood flow recovery was detected in the NDPKB(-/-) mice after hindlimb ligation. In in vitro studies, a small interfering RNA-mediated knockdown of NDPKB was performed in human umbilical endothelial cells. NDPKB depletion impaired vascular endothelial growth factor (VEGF)-induced sprouting and hampered the VEGF-induced spatial redistributions of the VEGF receptor type 2 and VE-cadherin at the plasma membrane. Concomitantly, NDPKB depletion increased the permeability of the human umbilical endothelial cell monolayer.This is the first report to show that NDPKB is required for VEGF-induced angiogenesis and contributes to the correct localization of VEGF receptor type 2 and VE-cadherin at the endothelial adherens junctions. Therefore, our data identify NDPKB as a novel molecular target to modulate VEGF-dependent angiogenesis.
000119929 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000119929 588__ $$aDataset connected to CrossRef, PubMed,
000119929 650_7 $$2NLM Chemicals$$aAntigens, CD
000119929 650_7 $$2NLM Chemicals$$aCadherins
000119929 650_7 $$2NLM Chemicals$$aNM23 Nucleoside Diphosphate Kinases
000119929 650_7 $$2NLM Chemicals$$aZebrafish Proteins
000119929 650_7 $$2NLM Chemicals$$acadherin 5
000119929 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aKDR protein, human
000119929 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aVascular Endothelial Growth Factor Receptor-2
000119929 650_7 $$0EC 2.7.4.6$$2NLM Chemicals$$aNME2 protein, human
000119929 650_7 $$0EC 2.7.4.6$$2NLM Chemicals$$aNme2 protein, mouse
000119929 7001_ $$aGross, Shalini$$b1
000119929 7001_ $$0P:(DE-HGF)0$$aWolf, Nadine M$$b2
000119929 7001_ $$aButenschön, Vicki M$$b3
000119929 7001_ $$aQiu, Yi$$b4
000119929 7001_ $$aDevraj, Kavi$$b5
000119929 7001_ $$aLiebner, Stefan$$b6
000119929 7001_ $$0P:(DE-HGF)0$$aKroll, Jens$$b7
000119929 7001_ $$aSkolnik, Edward Y$$b8
000119929 7001_ $$aHammes, Hans-Peter$$b9
000119929 7001_ $$aWieland, Thomas$$b10
000119929 773__ $$0PERI:(DE-600)1494427-3$$a10.1161/ATVBAHA.114.304239$$gVol. 34, no. 10, p. 2292 - 2300$$n10$$p2292 - 2300$$tArteriosclerosis, thrombosis, and vascular biology$$v34$$x1524-4636$$y2014
000119929 909CO $$ooai:inrepo02.dkfz.de:119929$$pVDB
000119929 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000119929 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000119929 9141_ $$y2014
000119929 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz
000119929 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000119929 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bARTERIOSCL THROM VAS : 2015
000119929 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000119929 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000119929 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000119929 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000119929 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000119929 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000119929 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000119929 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000119929 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000119929 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bARTERIOSCL THROM VAS : 2015
000119929 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x0
000119929 980__ $$ajournal
000119929 980__ $$aVDB
000119929 980__ $$aI:(DE-He78)A190-20160331
000119929 980__ $$aUNRESTRICTED