000120434 001__ 120434
000120434 005__ 20240228145445.0
000120434 0247_ $$2doi$$a10.1007/s00401-017-1678-x
000120434 0247_ $$2pmid$$apmid:28130639
000120434 0247_ $$2ISSN$$a0001-6322
000120434 0247_ $$2ISSN$$a1432-0533
000120434 0247_ $$2altmetric$$aaltmetric:15927085
000120434 037__ $$aDKFZ-2017-00863
000120434 041__ $$aeng
000120434 082__ $$a610
000120434 1001_ $$00000-0001-7119-7654$$aOlar, Adriana$$b0
000120434 245__ $$aGlobal epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma.
000120434 260__ $$aBerlin$$bSpringer$$c2017
000120434 3367_ $$2DRIVER$$aarticle
000120434 3367_ $$2DataCite$$aOutput Types/Journal article
000120434 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1660900991_9237
000120434 3367_ $$2BibTeX$$aARTICLE
000120434 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120434 3367_ $$00$$2EndNote$$aJournal Article
000120434 520__ $$aMeningioma is the most common primary brain tumor and carries a substantial risk of local recurrence. Methylation profiles of meningioma and their clinical implications are not well understood. We hypothesized that aggressive meningiomas have unique DNA methylation patterns that could be used to better stratify patient management. Samples (n = 140) were profiled using the Illumina HumanMethylation450BeadChip. Unsupervised modeling on a training set (n = 89) identified 2 molecular methylation subgroups of meningioma (MM) with significantly different recurrence-free survival (RFS) times between the groups: a prognostically unfavorable subgroup (MM-UNFAV) and a prognostically favorable subgroup (MM-FAV). This finding was validated in the remaining 51 samples and led to a baseline meningioma methylation classifier (bMMC) defined by 283 CpG loci (283-bMMC). To further optimize a recurrence predictor, probes subsumed within the baseline classifier were subject to additional modeling using a similar training/validation approach, leading to a 64-CpG loci meningioma methylation predictor (64-MMP). After adjustment for relevant clinical variables [WHO grade, mitotic index, Simpson grade, sex, location, and copy number aberrations (CNAs)] multivariable analyses for RFS showed that the baseline methylation classifier was not significant (p = 0.0793). The methylation predictor, however, was significantly associated with tumor recurrence (p < 0.0001). CNAs were extracted from the 450k intensity profiles. Tumor samples in the MM-UNFAV subgroup showed an overall higher proportion of CNAs compared to the MM-FAV subgroup tumors and the CNAs were complex in nature. CNAs in the MM-UNFAV subgroup included recurrent losses of 1p, 6q, 14q and 18q, and gain of 1q, all of which were previously identified as indicators of poor outcome. In conclusion, our analyses demonstrate robust DNA methylation signatures in meningioma that correlate with CNAs and stratify patients by recurrence risk.
000120434 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000120434 588__ $$aDataset connected to CrossRef, PubMed,
000120434 7001_ $$aWani, Khalida M$$b1
000120434 7001_ $$aWilson, Charmaine D$$b2
000120434 7001_ $$aZadeh, Gelareh$$b3
000120434 7001_ $$aDeMonte, Franco$$b4
000120434 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b5$$udkfz
000120434 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b6$$udkfz
000120434 7001_ $$aSulman, Erik P$$b7
000120434 7001_ $$aAldape, Kenneth D$$b8
000120434 773__ $$0PERI:(DE-600)1458410-4$$a10.1007/s00401-017-1678-x$$gVol. 133, no. 3, p. 431 - 444$$n3$$p431 - 444$$tActa neuropathologica$$v133$$x1432-0533$$y2017
000120434 909CO $$ooai:inrepo02.dkfz.de:120434$$pVDB
000120434 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000120434 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000120434 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000120434 9141_ $$y2017
000120434 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000120434 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA NEUROPATHOL : 2015
000120434 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120434 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120434 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000120434 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000120434 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000120434 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120434 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000120434 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120434 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120434 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000120434 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000120434 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACTA NEUROPATHOL : 2015
000120434 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000120434 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x1
000120434 980__ $$ajournal
000120434 980__ $$aVDB
000120434 980__ $$aI:(DE-He78)B062-20160331
000120434 980__ $$aI:(DE-He78)L101-20160331
000120434 980__ $$aUNRESTRICTED