001     120434
005     20240228145445.0
024 7 _ |a 10.1007/s00401-017-1678-x
|2 doi
024 7 _ |a pmid:28130639
|2 pmid
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:15927085
|2 altmetric
037 _ _ |a DKFZ-2017-00863
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Olar, Adriana
|0 0000-0001-7119-7654
|b 0
245 _ _ |a Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma.
260 _ _ |a Berlin
|c 2017
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660900991_9237
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Meningioma is the most common primary brain tumor and carries a substantial risk of local recurrence. Methylation profiles of meningioma and their clinical implications are not well understood. We hypothesized that aggressive meningiomas have unique DNA methylation patterns that could be used to better stratify patient management. Samples (n = 140) were profiled using the Illumina HumanMethylation450BeadChip. Unsupervised modeling on a training set (n = 89) identified 2 molecular methylation subgroups of meningioma (MM) with significantly different recurrence-free survival (RFS) times between the groups: a prognostically unfavorable subgroup (MM-UNFAV) and a prognostically favorable subgroup (MM-FAV). This finding was validated in the remaining 51 samples and led to a baseline meningioma methylation classifier (bMMC) defined by 283 CpG loci (283-bMMC). To further optimize a recurrence predictor, probes subsumed within the baseline classifier were subject to additional modeling using a similar training/validation approach, leading to a 64-CpG loci meningioma methylation predictor (64-MMP). After adjustment for relevant clinical variables [WHO grade, mitotic index, Simpson grade, sex, location, and copy number aberrations (CNAs)] multivariable analyses for RFS showed that the baseline methylation classifier was not significant (p = 0.0793). The methylation predictor, however, was significantly associated with tumor recurrence (p < 0.0001). CNAs were extracted from the 450k intensity profiles. Tumor samples in the MM-UNFAV subgroup showed an overall higher proportion of CNAs compared to the MM-FAV subgroup tumors and the CNAs were complex in nature. CNAs in the MM-UNFAV subgroup included recurrent losses of 1p, 6q, 14q and 18q, and gain of 1q, all of which were previously identified as indicators of poor outcome. In conclusion, our analyses demonstrate robust DNA methylation signatures in meningioma that correlate with CNAs and stratify patients by recurrence risk.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wani, Khalida M
|b 1
700 1 _ |a Wilson, Charmaine D
|b 2
700 1 _ |a Zadeh, Gelareh
|b 3
700 1 _ |a DeMonte, Franco
|b 4
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 5
|u dkfz
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 6
|u dkfz
700 1 _ |a Sulman, Erik P
|b 7
700 1 _ |a Aldape, Kenneth D
|b 8
773 _ _ |a 10.1007/s00401-017-1678-x
|g Vol. 133, no. 3, p. 431 - 444
|0 PERI:(DE-600)1458410-4
|n 3
|p 431 - 444
|t Acta neuropathologica
|v 133
|y 2017
|x 1432-0533
909 C O |p VDB
|o oai:inrepo02.dkfz.de:120434
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACTA NEUROPATHOL : 2015
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21