000120468 001__ 120468
000120468 005__ 20240228145447.0
000120468 0247_ $$2doi$$a10.1007/s11060-016-2326-3
000120468 0247_ $$2pmid$$apmid:28108836
000120468 0247_ $$2ISSN$$a0167-594X
000120468 0247_ $$2ISSN$$a0167-594x
000120468 0247_ $$2ISSN$$a1573-7373
000120468 0247_ $$2altmetric$$aaltmetric:16509247
000120468 037__ $$aDKFZ-2017-00897
000120468 041__ $$aeng
000120468 082__ $$a610
000120468 1001_ $$aJeibmann, Astrid$$b0
000120468 245__ $$aSMAD dependent signaling plays a detrimental role in a fly model of SMARCB1-deficiency and the biology of atypical teratoid/rhabdoid tumors.
000120468 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2017
000120468 3367_ $$2DRIVER$$aarticle
000120468 3367_ $$2DataCite$$aOutput Types/Journal article
000120468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1533902384_27278
000120468 3367_ $$2BibTeX$$aARTICLE
000120468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120468 3367_ $$00$$2EndNote$$aJournal Article
000120468 520__ $$aAtypical teratoid/rhabdoid tumors (ATRT) are highly malignant brain tumors arising in young children. The majority of ATRT is characterized by inactivation of the chromatin remodeling complex member SMARCB1 (INI1/hSNF5). Little is known, however, on downstream pathways involved in the detrimental effects of SMARCB1 deficiency which might also represent targets for treatment. Using Drosophila melanogaster and the Gal4-UAS system, modifier screens were performed in order to identify the role of SMAD dependent signaling in the lethal phenotype associated with knockdown of snr1, the fly homolog of SMARCB1. Expression and functional role of human homologs was next investigated in ATRT tumor samples and SMARCB1-deficient rhabdoid tumor cells. The lethal phenotype associated with snr1 knockdown in Drosophila melanogaster could be shifted to later stages of development upon additional knockdown of several decapentaplegic pathway members including Smox, and Med. Similarly, the transforming growth factor beta (TGFbeta) receptor type I kinase inhibitor SB431542 ameliorated the detrimental effect of snr1 knockdown in the fruit fly. Examination of homologs of candidate decapentaplegic pathway members in human SMARCB1-deficent ATRT samples revealed SMAD3 and SMAD6 to be over-expressed. In SMARCB1-deficent rhabdoid tumor cells, siRNA-mediated silencing of SMAD3 or SMAD6 expression reduced TGFbeta signaling activity and resulted in decreased proliferation. Similar results were obtained upon pharmacological inhibition of TGFbeta signaling using SB431542. Our data suggest that SMAD dependent signaling is involved in the detrimental effects of SMARCB1-deficiency and provide a rationale for the investigation of TGFbeta targeted treatments in ATRT.
000120468 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000120468 588__ $$aDataset connected to CrossRef, PubMed,
000120468 7001_ $$aSchulz, Jacqueline$$b1
000120468 7001_ $$aEikmeier, Kristin$$b2
000120468 7001_ $$0P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8$$aJohann, Pascal$$b3$$udkfz
000120468 7001_ $$aThiel, Katharina$$b4
000120468 7001_ $$aTegeder, Isabel$$b5
000120468 7001_ $$aAmbrée, Oliver$$b6
000120468 7001_ $$aFrühwald, Michael C$$b7
000120468 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b8$$udkfz
000120468 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b9$$udkfz
000120468 7001_ $$aPaulus, Werner$$b10
000120468 7001_ $$aHasselblatt, Martin$$b11
000120468 773__ $$0PERI:(DE-600)2007293-4$$a10.1007/s11060-016-2326-3$$gVol. 131, no. 3, p. 477 - 484$$n3$$p477 - 484$$tJournal of neuro-oncology$$v131$$x1573-7373$$y2017
000120468 909CO $$ooai:inrepo02.dkfz.de:120468$$pVDB
000120468 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000120468 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000120468 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000120468 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000120468 9141_ $$y2017
000120468 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000120468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEURO-ONCOL : 2015
000120468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120468 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000120468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120468 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000120468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120468 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120468 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000120468 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000120468 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000120468 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x1
000120468 980__ $$ajournal
000120468 980__ $$aVDB
000120468 980__ $$aI:(DE-He78)B062-20160331
000120468 980__ $$aI:(DE-He78)L101-20160331
000120468 980__ $$aUNRESTRICTED