000120517 001__ 120517
000120517 005__ 20240228145450.0
000120517 0247_ $$2doi$$a10.1038/nprot.2017.018
000120517 0247_ $$2pmid$$apmid:28358393
000120517 0247_ $$2ISSN$$a1750-2799
000120517 0247_ $$2ISSN$$a1754-2189
000120517 0247_ $$2altmetric$$aaltmetric:18295717
000120517 037__ $$aDKFZ-2017-00946
000120517 041__ $$aeng
000120517 082__ $$a610
000120517 1001_ $$aChen, Michelle B$$b0
000120517 245__ $$aOn-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics.
000120517 260__ $$aBasingstoke$$bNature Publishing Group$$c2017
000120517 3367_ $$2DRIVER$$aarticle
000120517 3367_ $$2DataCite$$aOutput Types/Journal article
000120517 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510050746_26477
000120517 3367_ $$2BibTeX$$aARTICLE
000120517 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120517 3367_ $$00$$2EndNote$$aJournal Article
000120517 520__ $$aDistant metastasis, which results in >90% of cancer-related deaths, is enabled by hematogenous dissemination of tumor cells via the circulation. This requires the completion of a sequence of complex steps including transit, initial arrest, extravasation, survival and proliferation. Increased understanding of the cellular and molecular players enabling each of these steps is key to uncovering new opportunities for therapeutic intervention during early metastatic dissemination. As a protocol extension, this article describes an adaptation to our existing protocol describing a microfluidic platform that offers additional applications. This protocol describes an in vitro model of the human microcirculation with the potential to recapitulate discrete steps of early metastatic seeding, including arrest, transendothelial migration and early micrometastases formation. The microdevice features self-organized human microvascular networks formed over 4-5 d, after which the tumor can be perfused and extravasation events are easily tracked over 72 h via standard confocal microscopy. Contrary to most in vivo and in vitro extravasation assays, robust and rapid scoring of extravascular cells, combined with high-resolution imaging, can be easily achieved because of the confinement of the vascular network to one plane close to the surface of the device. This renders extravascular cells clearly distinct and allows tumor cells of interest to be identified quickly as compared with those in thick tissues. The ability to generate large numbers of devices (∼36) per experiment further allows for highly parametric studies, which are required when testing multiple genetic or pharmacological perturbations. This is coupled with the capability for live tracking of single-cell extravasation events, allowing both tumor and endothelial morphological dynamics to be observed in high detail with a moderate number of data points.
000120517 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000120517 588__ $$aDataset connected to CrossRef, PubMed,
000120517 7001_ $$aWhisler, Jordan A$$b1
000120517 7001_ $$0P:(DE-HGF)0$$aFröse, Julia$$b2
000120517 7001_ $$aYu, Cathy$$b3
000120517 7001_ $$aShin, Yoojin$$b4
000120517 7001_ $$aKamm, Roger D$$b5
000120517 773__ $$0PERI:(DE-600)2244966-8$$a10.1038/nprot.2017.018$$gVol. 12, no. 5, p. 865 - 880$$n5$$p865 - 880$$tNature protocols$$v12$$x1750-2799$$y2017
000120517 909CO $$ooai:inrepo02.dkfz.de:120517$$pVDB
000120517 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000120517 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000120517 9141_ $$y2017
000120517 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000120517 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120517 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000120517 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PROTOC : 2015
000120517 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120517 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120517 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120517 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120517 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000120517 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNAT PROTOC : 2015
000120517 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x0
000120517 980__ $$ajournal
000120517 980__ $$aVDB
000120517 980__ $$aI:(DE-He78)A190-20160331
000120517 980__ $$aUNRESTRICTED