001     120527
005     20240228145450.0
024 7 _ |a 10.1186/s13046-017-0496-2
|2 doi
024 7 _ |a pmid:28166815
|2 pmid
024 7 _ |a pmc:PMC5294868
|2 pmc
024 7 _ |a 0392-9078
|2 ISSN
024 7 _ |a 1756-9966
|2 ISSN
024 7 _ |a altmetric:81012887
|2 altmetric
037 _ _ |a DKFZ-2017-00956
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Grünow, Jennifer
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Regulation of submaxillary gland androgen-regulated protein 3A via estrogen receptor 2 in radioresistant head and neck squamous cell carcinoma cells.
260 _ _ |a Berlin
|c 2017
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510656896_6385
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular mechanisms of intrinsic or acquired radioresistance serve as critical barrier for curative therapy of head and neck squamous cell carcinoma (HNSCC) and remain a major obstacle for progression-free and disease-specific survival.HNSCC cell lines were treated with a protocol of fractionated irradiation (IR, 4× 2Gy) alone or in combination with antagonists of estrogen receptor signaling and viability was determined by a colony-forming assay (CFA). Expression of submaxillary gland androgen-regulated protein 3A (SMR3A) and estrogen receptor 2 (ESR2) were assessed in tumor cells in vitro by RQ-PCR, Western blot analysis and immunofluorescence staining, and by immunohistochemical staining of tissue microarrays containing tumor sections from patients with oropharyngeal squamous cell carcinoma (OPSCC), which were treated by definitive or adjuvant radiotherapy. Subgroups with distinct SMR3A and ESR2 expression patterns were correlated with clinical parameters and survival outcome including multivariable analysis.Fractionated irradiation (IR) revealed an accumulation of tumor cells with prominent SMR3A expression, which was accompanied by an up-regulation of the estrogen receptor 2 (ESR2). ESR2-dependent regulation of SMR3A was supported by induced expression after stimulation with estradiol (E2), which was impaired by co-treatment with 4-Hydroxytamoxifen (TAM) or Fulvestrant, respectively. Both drugs significantly sensitized FaDu cells to fractionated IR as determined by a CFA and accelerated apoptosis. These data suggest a critical role of ESR2 in radioresistance and that SMR3A might serve as a surrogate marker for active ESR2 signaling. In line with this assumption, ESR2-positive oropharyngeal squamous cell carcinoma (OPSCC) with high SMR3A expression had an unfavorable progression-free and disease-specific survival as compared to those tumors with low SMR3A expression.In summary, our findings provide compelling experimental evidence that HNSCC with SMR3A and ESR2 co-expression have a higher risk for treatment failure and these patients might benefit from clinically well-established drugs targeting estrogen receptor signaling.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Rong, Chao
|b 1
700 1 _ |a Hischmann, Jan
|b 2
700 1 _ |a Zaoui, Karim
|b 3
700 1 _ |a Flechtenmacher, Christa
|b 4
700 1 _ |a Weber, Klaus-Josef
|b 5
700 1 _ |a Plinkert, Peter
|b 6
700 1 _ |a Hess, Jochen
|0 0000-0003-3493-1711
|b 7
|e Last author
773 _ _ |a 10.1186/s13046-017-0496-2
|g Vol. 36, no. 1, p. 25
|0 PERI:(DE-600)2430698-8
|n 1
|p 25
|t Journal of experimental & clinical cancer research
|v 36
|y 2017
|x 1756-9966
909 C O |o oai:inrepo02.dkfz.de:120527
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 0000-0003-3493-1711
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EXP CLIN CANC RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)G405-20160331
|k G405
|l Molekulare Grundlagen von HNO-Tumoren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G405-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21