000120541 001__ 120541
000120541 005__ 20240228145451.0
000120541 0247_ $$2doi$$a10.1002/gcc.22431
000120541 0247_ $$2pmid$$apmid:27792260
000120541 0247_ $$2ISSN$$a1045-2257
000120541 0247_ $$2ISSN$$a1098-2264
000120541 0247_ $$2altmetric$$aaltmetric:13158887
000120541 037__ $$aDKFZ-2017-00970
000120541 041__ $$aeng
000120541 082__ $$a570
000120541 1001_ $$aPfarr, Nicole$$b0
000120541 245__ $$aTargeted next-generation sequencing enables reliable detection of HER2 (ERBB2) status in breast cancer and provides ancillary information of clinical relevance.
000120541 260__ $$aNew York, NY$$bWiley-Liss$$c2017
000120541 3367_ $$2DRIVER$$aarticle
000120541 3367_ $$2DataCite$$aOutput Types/Journal article
000120541 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1533719288_22870
000120541 3367_ $$2BibTeX$$aARTICLE
000120541 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120541 3367_ $$00$$2EndNote$$aJournal Article
000120541 520__ $$aHER2-positive breast cancers are a heterogeneous group of tumors, which share amplification and overexpression of HER2. In routine diagnostics, the HER2 (ERBB2) status is currently assessed by immunohistochemistry (IHC) and in situ hybridization (ISH). Data on targeted next-generation sequencing (NGS) approaches that could be used to determine the HER2 status are sparse. Employing two breast cancer-related gene panels, we performed targeted NGS of 41 FFPE breast cancers for which full pathological work-up including ISH and IHC results was available. Selected cases were analyzed by qPCR. Of the 41 cases, the HER2 status of the 4 HER2-positive and 6 HER2-negative tumors was independently detected by our NGS approach achieving a concordance rate of 100%. The remaining 31 cases were equivocal HER2 cases by IHC of which 5 showed amplification of HER2 by ISH. Our NGS approach classified all non-amplified cases correctly as HER2 negative and corroborated all but one of the 5 cases with amplified HER2 as detected by ISH. For the overall cohort, concordance between the gold standard and NGS was 97.6% (sensitivity 88.9% and specificity 100%). Additionally, we observed mutations in PIK3CA (44%), HER2 (8%), and CDH1 (6%) among others. Amplifications were found in CCND1 (12%), followed by MYC (10%) and EGFR (2%) and deletions in CDKN2A (10%), MAP2K4 and PIK3R1 (2% each). We here show that targeted NGS data can be used to interrogate the HER2 status with high specificity and high concordance with gold standard methods. Moreover, this approach identifies additional genetic events that may be clinically exploitable. © 2016 Wiley Periodicals, Inc.
000120541 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000120541 588__ $$aDataset connected to CrossRef, PubMed,
000120541 7001_ $$aPenzel, Roland$$b1
000120541 7001_ $$aEndris, Volker$$b2
000120541 7001_ $$aLier, Clemens$$b3
000120541 7001_ $$aFlechtenmacher, Christa$$b4
000120541 7001_ $$aVolckmar, Anna-Lena$$b5
000120541 7001_ $$0P:(DE-He78)3b9d10db5dbbf9eb21d02f77d99c8ac9$$aKirchner, Martina$$b6$$udkfz
000120541 7001_ $$aBudczies, Jan$$b7
000120541 7001_ $$aLeichsenring, Jonas$$b8
000120541 7001_ $$aHerpel, Esther$$b9
000120541 7001_ $$aNoske, Aurelia$$b10
000120541 7001_ $$0P:(DE-HGF)0$$aWeichert, Wilko$$b11
000120541 7001_ $$0P:(DE-He78)2dc788b30e99b99a3f9b45ca60f3939d$$aSchneeweiss, Andreas$$b12
000120541 7001_ $$0P:(DE-HGF)0$$aSchirmacher, Peter$$b13
000120541 7001_ $$0P:(DE-HGF)0$$aSinn, Hans-Peter$$b14
000120541 7001_ $$0P:(DE-HGF)0$$aStenzinger, Albrecht$$b15
000120541 773__ $$0PERI:(DE-600)1492641-6$$a10.1002/gcc.22431$$gVol. 56, no. 4, p. 255 - 265$$n4$$p255 - 265$$tGenes, chromosomes & cancer$$v56$$x1045-2257$$y2017
000120541 909CO $$ooai:inrepo02.dkfz.de:120541$$pVDB
000120541 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3b9d10db5dbbf9eb21d02f77d99c8ac9$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000120541 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000120541 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2dc788b30e99b99a3f9b45ca60f3939d$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000120541 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000120541 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b14$$kExtern
000120541 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b15$$kExtern
000120541 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000120541 9141_ $$y2017
000120541 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000120541 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGENE CHROMOSOME CANC : 2015
000120541 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120541 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120541 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000120541 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120541 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000120541 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120541 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120541 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000120541 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000120541 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000120541 9201_ $$0I:(DE-He78)L701-20160331$$kL701$$lDKTK München$$x0
000120541 9201_ $$0I:(DE-He78)G825-20160331$$kG825$$lMT NCT Mol. Pathology Core$$x1
000120541 9201_ $$0I:(DE-He78)V964-20160331$$kV964$$lNCT-KliHD$$x2
000120541 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x3
000120541 980__ $$ajournal
000120541 980__ $$aVDB
000120541 980__ $$aI:(DE-He78)L701-20160331
000120541 980__ $$aI:(DE-He78)G825-20160331
000120541 980__ $$aI:(DE-He78)V964-20160331
000120541 980__ $$aI:(DE-He78)L101-20160331
000120541 980__ $$aUNRESTRICTED