001     120560
005     20240228145452.0
024 7 _ |a 10.1126/scisignal.aaf7593
|2 doi
024 7 _ |a pmid:28292958
|2 pmid
024 7 _ |a 1525-8882
|2 ISSN
024 7 _ |a 1937-9145
|2 ISSN
024 7 _ |a 1945-0877
|2 ISSN
024 7 _ |a altmetric:17347502
|2 altmetric
037 _ _ |a DKFZ-2017-00989
041 _ _ |a eng
082 _ _ |a 500
100 1 _ |a Liu, Kun-Wei
|b 0
245 _ _ |a Molecular mechanisms and therapeutic targets in pediatric brain tumors.
260 _ _ |a Washington, DC [u.a.]
|c 2017
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660820895_27718
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Brain tumors are among the leading causes of cancer-related deaths in children. Although surgery, aggressive radiation, and chemotherapy have improved outcomes, many patients still die of their disease. Moreover, those who survive often suffer devastating long-term side effects from the therapies. A greater understanding of the molecular underpinnings of these diseases will drive the development of new therapeutic approaches. Advances in genomics and epigenomics have provided unprecedented insight into the molecular diversity of these diseases and, in several cases, have revealed key genes and signaling pathways that drive tumor growth. These not only serve as potential therapeutic targets but also have facilitated the creation of animal models that faithfully recapitulate the human disease for preclinical studies. In this Review, we discuss recent progress in understanding the molecular basis of the three most common malignant pediatric brain tumors-medulloblastoma, ependymoma, and high-grade glioma-and the implications for development of safer and more effective therapies.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Pajtler, Kristian
|0 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
|b 1
|e First author
|u dkfz
700 1 _ |a Worst, Barbara
|0 P:(DE-He78)fae1bf941c5fd76cf5356ecfa1243cc4
|b 2
700 1 _ |a Pfister, Stefan M
|b 3
700 1 _ |a Wechsler-Reya, Robert J
|0 0000-0002-7463-8352
|b 4
773 _ _ |a 10.1126/scisignal.aaf7593
|g Vol. 10, no. 470, p. eaaf7593 -
|0 PERI:(DE-600)2417226-1
|n 470
|p eaaf7593
|t Science signaling
|v 10
|y 2017
|x 1937-9145
909 C O |p VDB
|o oai:inrepo02.dkfz.de:120560
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)fae1bf941c5fd76cf5356ecfa1243cc4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI SIGNAL : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI SIGNAL : 2015
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21