000120620 001__ 120620 000120620 005__ 20240228145456.0 000120620 0247_ $$2doi$$a10.1016/j.eururo.2017.03.039 000120620 0247_ $$2pmid$$apmid:28400169 000120620 0247_ $$2ISSN$$a0302-2838 000120620 0247_ $$2ISSN$$a1421-993X 000120620 0247_ $$2ISSN$$a1873-7560 000120620 0247_ $$2altmetric$$aaltmetric:19612579 000120620 037__ $$aDKFZ-2017-01048 000120620 041__ $$aeng 000120620 082__ $$a610 000120620 1001_ $$0P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aRadtke, Jan Philipp$$b0$$eFirst author 000120620 245__ $$aCombined Clinical Parameters and Multiparametric Magnetic Resonance Imaging for Advanced Risk Modeling of Prostate Cancer-Patient-tailored Risk Stratification Can Reduce Unnecessary Biopsies. 000120620 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017 000120620 3367_ $$2DRIVER$$aarticle 000120620 3367_ $$2DataCite$$aOutput Types/Journal article 000120620 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525768902_9511 000120620 3367_ $$2BibTeX$$aARTICLE 000120620 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000120620 3367_ $$00$$2EndNote$$aJournal Article 000120620 520__ $$aMultiparametric magnetic resonance imaging (mpMRI) is gaining widespread acceptance in prostate cancer (PC) diagnosis and improves significant PC (sPC; Gleason score≥3+4) detection. Decision making based on European Randomised Study of Screening for PC (ERSPC) risk-calculator (RC) parameters may overcome prostate-specific antigen (PSA) limitations.We added pre-biopsy mpMRI to ERSPC-RC parameters and developed risk models (RMs) to predict individual sPC risk for biopsy-naïve men and men after previous biopsy.We retrospectively analyzed clinical parameters of 1159 men who underwent mpMRI prior to MRI/transrectal ultrasound fusion biopsy between 2012 and 2015.Multivariate regression analyses were used to determine significant sPC predictors for RM development. The prediction performance was compared with ERSPC-RCs, RCs refitted on our cohort, Prostate Imaging Reporting and Data System (PI-RADS) v1.0, and ERSPC-RC plus PI-RADSv1.0 using receiver-operating characteristics (ROCs). Discrimination and calibration of the RM, as well as net decision and reduction curve analyses were evaluated based on resampling methods.PSA, prostate volume, digital-rectal examination, and PI-RADS were significant sPC predictors and included in the RMs together with age. The ROC area under the curve of the RM for biopsy-naïve men was comparable with ERSPC-RC3 plus PI-RADSv1.0 (0.83 vs 0.84) but larger compared with ERSPC-RC3 (0.81), refitted RC3 (0.80), and PI-RADS (0.76). For postbiopsy men, the novel RM's discrimination (0.81) was higher, compared with PI-RADS (0.78), ERSPC-RC4 (0.66), refitted RC4 (0.76), and ERSPC-RC4 plus PI-RADSv1.0 (0.78). Both RM benefits exceeded those of ERSPC-RCs and PI-RADS in the decision regarding which patient to receive biopsy and enabled the highest reduction rate of unnecessary biopsies. Limitations include a monocentric design and a lack of PI-RADSv2.0.The novel RMs, incorporating clinical parameters and PI-RADS, performed significantly better compared with RMs without PI-RADS and provided measurable benefit in making the decision to biopsy men at a suspicion of PC. For biopsy-naïve patients, both our RM and ERSPC-RC3 plus PI-RADSv1.0 exceeded the prediction performance compared with clinical parameters alone.Combined risk models including clinical and imaging parameters predict clinically relevant prostate cancer significantly better than clinical risk calculators and multiparametric magnetic resonance imaging alone. The risk models demonstrate a benefit in making a decision about which patient needs a biopsy and concurrently help avoid unnecessary biopsies. 000120620 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000120620 588__ $$aDataset connected to CrossRef, PubMed, 000120620 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b1 000120620 7001_ $$aKesch, Claudia$$b2 000120620 7001_ $$0P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aFreitag, Martin$$b3 000120620 7001_ $$aAlt, Celine D$$b4 000120620 7001_ $$aCelik, Kamil$$b5 000120620 7001_ $$aDistler, Florian$$b6 000120620 7001_ $$0P:(DE-He78)6c54d919bb3371b6d7f277e2c6262a4a$$aRoth, Wilfried$$b7 000120620 7001_ $$aWieczorek, Kathrin$$b8 000120620 7001_ $$0P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91$$aStock, Christian$$b9 000120620 7001_ $$aDuensing, Stefan$$b10 000120620 7001_ $$0P:(DE-HGF)0$$aRoethke, Matthias C$$b11 000120620 7001_ $$aTeber, Dogu$$b12 000120620 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b13$$udkfz 000120620 7001_ $$aHohenfellner, Markus$$b14 000120620 7001_ $$0P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aBonekamp, David$$b15 000120620 7001_ $$aHadaschik, Boris A$$b16 000120620 773__ $$0PERI:(DE-600)1482253-2$$a10.1016/j.eururo.2017.03.039$$gp. S0302283817302671$$n6$$p888-896$$tEuropean urology$$v72$$x0302-2838$$y2017 000120620 909CO $$ooai:inrepo02.dkfz.de:120620$$pVDB 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c420f6efccb409e1a287be027501a74c$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c54d919bb3371b6d7f277e2c6262a4a$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ 000120620 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ 000120620 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000120620 9141_ $$y2017 000120620 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000120620 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000120620 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR UROL : 2015 000120620 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000120620 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000120620 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000120620 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000120620 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000120620 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000120620 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000120620 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000120620 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000120620 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000120620 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000120620 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEUR UROL : 2015 000120620 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x0 000120620 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x1 000120620 9201_ $$0I:(DE-He78)G150-20160331$$kG150$$lMolekulare Tumorpathologie$$x2 000120620 980__ $$ajournal 000120620 980__ $$aVDB 000120620 980__ $$aI:(DE-He78)E010-20160331 000120620 980__ $$aI:(DE-He78)C060-20160331 000120620 980__ $$aI:(DE-He78)G150-20160331 000120620 980__ $$aUNRESTRICTED