001     120620
005     20240228145456.0
024 7 _ |a 10.1016/j.eururo.2017.03.039
|2 doi
024 7 _ |a pmid:28400169
|2 pmid
024 7 _ |a 0302-2838
|2 ISSN
024 7 _ |a 1421-993X
|2 ISSN
024 7 _ |a 1873-7560
|2 ISSN
024 7 _ |a altmetric:19612579
|2 altmetric
037 _ _ |a DKFZ-2017-01048
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Radtke, Jan Philipp
|0 P:(DE-He78)79897f8897ff77676549d9895258a0f2
|b 0
|e First author
245 _ _ |a Combined Clinical Parameters and Multiparametric Magnetic Resonance Imaging for Advanced Risk Modeling of Prostate Cancer-Patient-tailored Risk Stratification Can Reduce Unnecessary Biopsies.
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525768902_9511
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Multiparametric magnetic resonance imaging (mpMRI) is gaining widespread acceptance in prostate cancer (PC) diagnosis and improves significant PC (sPC; Gleason score≥3+4) detection. Decision making based on European Randomised Study of Screening for PC (ERSPC) risk-calculator (RC) parameters may overcome prostate-specific antigen (PSA) limitations.We added pre-biopsy mpMRI to ERSPC-RC parameters and developed risk models (RMs) to predict individual sPC risk for biopsy-naïve men and men after previous biopsy.We retrospectively analyzed clinical parameters of 1159 men who underwent mpMRI prior to MRI/transrectal ultrasound fusion biopsy between 2012 and 2015.Multivariate regression analyses were used to determine significant sPC predictors for RM development. The prediction performance was compared with ERSPC-RCs, RCs refitted on our cohort, Prostate Imaging Reporting and Data System (PI-RADS) v1.0, and ERSPC-RC plus PI-RADSv1.0 using receiver-operating characteristics (ROCs). Discrimination and calibration of the RM, as well as net decision and reduction curve analyses were evaluated based on resampling methods.PSA, prostate volume, digital-rectal examination, and PI-RADS were significant sPC predictors and included in the RMs together with age. The ROC area under the curve of the RM for biopsy-naïve men was comparable with ERSPC-RC3 plus PI-RADSv1.0 (0.83 vs 0.84) but larger compared with ERSPC-RC3 (0.81), refitted RC3 (0.80), and PI-RADS (0.76). For postbiopsy men, the novel RM's discrimination (0.81) was higher, compared with PI-RADS (0.78), ERSPC-RC4 (0.66), refitted RC4 (0.76), and ERSPC-RC4 plus PI-RADSv1.0 (0.78). Both RM benefits exceeded those of ERSPC-RCs and PI-RADS in the decision regarding which patient to receive biopsy and enabled the highest reduction rate of unnecessary biopsies. Limitations include a monocentric design and a lack of PI-RADSv2.0.The novel RMs, incorporating clinical parameters and PI-RADS, performed significantly better compared with RMs without PI-RADS and provided measurable benefit in making the decision to biopsy men at a suspicion of PC. For biopsy-naïve patients, both our RM and ERSPC-RC3 plus PI-RADSv1.0 exceeded the prediction performance compared with clinical parameters alone.Combined risk models including clinical and imaging parameters predict clinically relevant prostate cancer significantly better than clinical risk calculators and multiparametric magnetic resonance imaging alone. The risk models demonstrate a benefit in making a decision about which patient needs a biopsy and concurrently help avoid unnecessary biopsies.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 1
700 1 _ |a Kesch, Claudia
|b 2
700 1 _ |a Freitag, Martin
|0 P:(DE-He78)c420f6efccb409e1a287be027501a74c
|b 3
700 1 _ |a Alt, Celine D
|b 4
700 1 _ |a Celik, Kamil
|b 5
700 1 _ |a Distler, Florian
|b 6
700 1 _ |a Roth, Wilfried
|0 P:(DE-He78)6c54d919bb3371b6d7f277e2c6262a4a
|b 7
700 1 _ |a Wieczorek, Kathrin
|b 8
700 1 _ |a Stock, Christian
|0 P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91
|b 9
700 1 _ |a Duensing, Stefan
|b 10
700 1 _ |a Roethke, Matthias C
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Teber, Dogu
|b 12
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 13
|u dkfz
700 1 _ |a Hohenfellner, Markus
|b 14
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 15
700 1 _ |a Hadaschik, Boris A
|b 16
773 _ _ |a 10.1016/j.eururo.2017.03.039
|g p. S0302283817302671
|0 PERI:(DE-600)1482253-2
|n 6
|p 888-896
|t European urology
|v 72
|y 2017
|x 0302-2838
909 C O |p VDB
|o oai:inrepo02.dkfz.de:120620
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)79897f8897ff77676549d9895258a0f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c420f6efccb409e1a287be027501a74c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)6c54d919bb3371b6d7f277e2c6262a4a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR UROL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EUR UROL : 2015
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)G150-20160331
|k G150
|l Molekulare Tumorpathologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)G150-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21