000120638 001__ 120638
000120638 005__ 20240228145457.0
000120638 0247_ $$2doi$$a10.1038/ijo.2017.8
000120638 0247_ $$2pmid$$apmid:28100914
000120638 0247_ $$2ISSN$$a0307-0565
000120638 0247_ $$2ISSN$$a1476-5497
000120638 0247_ $$2altmetric$$aaltmetric:15610014
000120638 037__ $$aDKFZ-2017-01066
000120638 041__ $$aeng
000120638 082__ $$a610
000120638 1001_ $$00000-0001-6999-4996$$aYoo, Y.$$b0
000120638 245__ $$aTET-mediated hydroxymethylcytosine at the Pparγ locus is required for initiation of adipogenic differentiation.
000120638 260__ $$aLondon [u.a.]$$bNature Publ. Group56782$$c2017
000120638 3367_ $$2DRIVER$$aarticle
000120638 3367_ $$2DataCite$$aOutput Types/Journal article
000120638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524654895_18386
000120638 3367_ $$2BibTeX$$aARTICLE
000120638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120638 3367_ $$00$$2EndNote$$aJournal Article
000120638 520__ $$aAdipose tissue is one of the main organs regulating energy homeostasis via energy storage as well as endocrine function. The adipocyte cell number is largely determined by adipogenesis. While the molecular mechanism of adipogenesis has been extensively studied, its role in dynamic DNA methylation plasticity remains unclear. Recently, it has been shown that Tet methylcytosine dioxygenase (TET) is catalytically capable of oxidizing DNA 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) toward a complete removal of the methylated cytosine. We investigate whether expression of the Tet genes and production of hydroxymethylcytosine are required for preadipocyte differentiation.Murine 3T3-L1 preadipocytes were used to evaluate the role of Tet1 and Tet2 genes during adipogenesis. Changes in adipogenic ability and in epigenetic status were analyzed, with and without interfering Tet1 and Tet2 expression using small interfering RNA (siRNA). The adipogenesis was evaluated by Oil-Red-O staining and induced expression of adipogenic genes using quantitative polymerase chain reaction (qPCR). Levels of 5-hmC and 5-mC were measured by MassARRAY, immunoprecipitation and GC mass spectrometry at specific loci as well as globally.Both Tet1 and Tet2 genes were upregulated in a time-dependent manner, accompanied by increased expression of hallmark adipogenic genes such as Pparγ and Fabp4 (P<0.05). The TET upregulation led to reduced DNA methylation and elevated hydroxymethylcytosine, both globally and specifically at the Pparγ locus (P<0.05 and P<0.01, respectively). Knockdown of Tet1 and Tet2 blocked adipogenesis (P<0.01) by repression of Pparγ expression (P<0.05). In particular, Tet2 knockdown repressed conversion of 5-mC to 5-hmC at the Pparγ locus (P<0.01). Moreover, vitamin C treatment enhanced adipogenesis (P<0.05), while fumarate treatment inhibited it (P<0.01) by modulating TET activities.TET proteins, particularly TET2, were required for adipogenesis by modulating DNA methylation at the Pparγ locus, subsequently by inducing Pparγ gene expression.
000120638 536__ $$0G:(DE-HGF)POF3-322$$a322 - Genetics and Pathophysiology (POF3-322)$$cPOF3-322$$fPOF III$$x0
000120638 588__ $$aDataset connected to CrossRef, PubMed,
000120638 7001_ $$aPark, J. H.$$b1
000120638 7001_ $$0P:(DE-He78)c566ec22a882273029b7cbe4ef700428$$aWeigel, C.$$b2$$udkfz
000120638 7001_ $$aLiesenfeld, D. B.$$b3
000120638 7001_ $$0P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f$$aWeichenhan, D.$$b4$$udkfz
000120638 7001_ $$0P:(DE-He78)4301875630bc997edf491c694ae1f8a9$$aPlass, C.$$b5$$udkfz
000120638 7001_ $$aSeo, D-G$$b6
000120638 7001_ $$aLindroth, A. M.$$b7
000120638 7001_ $$aPark, Y. J.$$b8
000120638 773__ $$0PERI:(DE-600)2009412-7$$a10.1038/ijo.2017.8$$gVol. 41, no. 4, p. 652 - 659$$n4$$p652 - 659$$tInternational journal of obesity and related metabolic disorders$$v41$$x1476-5497$$y2017
000120638 909CO $$ooai:inrepo02.dkfz.de:120638$$pVDB
000120638 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c566ec22a882273029b7cbe4ef700428$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000120638 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000120638 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4301875630bc997edf491c694ae1f8a9$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000120638 9131_ $$0G:(DE-HGF)POF3-322$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vGenetics and Pathophysiology$$x0
000120638 9141_ $$y2017
000120638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120638 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000120638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J OBESITY : 2014
000120638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120638 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000120638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120638 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120638 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000120638 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000120638 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000120638 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J OBESITY : 2014
000120638 9201_ $$0I:(DE-He78)C010-20160331$$kC010$$lEpigenomik und Krebsrisikofaktoren$$x0
000120638 980__ $$ajournal
000120638 980__ $$aVDB
000120638 980__ $$aI:(DE-He78)C010-20160331
000120638 980__ $$aUNRESTRICTED