000120669 001__ 120669
000120669 005__ 20240228145459.0
000120669 0247_ $$2doi$$a10.1002/bimj.201600047
000120669 0247_ $$2pmid$$apmid:28263395
000120669 0247_ $$2ISSN$$a0006-3452
000120669 0247_ $$2ISSN$$a0323-3847
000120669 0247_ $$2ISSN$$a1521-4036
000120669 037__ $$aDKFZ-2017-01095
000120669 041__ $$aeng
000120669 082__ $$a570
000120669 1001_ $$0P:(DE-He78)d1b6c3e8bac62b241b80780416e1388d$$aBeisel, Christina$$b0$$eFirst author$$udkfz
000120669 245__ $$aHeterogeneous treatment effects in stratified clinical trials with time-to-event endpoints.
000120669 260__ $$aBerlin$$bWiley-VCH$$c2017
000120669 3367_ $$2DRIVER$$aarticle
000120669 3367_ $$2DataCite$$aOutput Types/Journal article
000120669 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509715916_12190
000120669 3367_ $$2BibTeX$$aARTICLE
000120669 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120669 3367_ $$00$$2EndNote$$aJournal Article
000120669 520__ $$aWhen analyzing clinical trials with a stratified population, homogeneity of treatment effects is a common assumption in survival analysis. However, in the context of recent developments in clinical trial design, which aim to test multiple targeted therapies in corresponding subpopulations simultaneously, the assumption that there is no treatment-by-stratum interaction seems inappropriate. It becomes an issue if the expected sample size of the strata makes it unfeasible to analyze the trial arms individually. Alternatively, one might choose as primary aim to prove efficacy of the overall (targeted) treatment strategy. When testing for the overall treatment effect, a violation of the no-interaction assumption renders it necessary to deviate from standard methods that rely on this assumption. We investigate the performance of different methods for sample size calculation and data analysis under heterogeneous treatment effects. The commonly used sample size formula by Schoenfeld is compared to another formula by Lachin and Foulkes, and to an extension of Schoenfeld's formula allowing for stratification. Beyond the widely used (stratified) Cox model, we explore the lognormal shared frailty model, and a two-step analysis approach as potential alternatives that attempt to adjust for interstrata heterogeneity. We carry out a simulation study for a trial with three strata and violations of the no-interaction assumption. The extension of Schoenfeld's formula to heterogeneous strata effects provides the most reliable sample size with respect to desired versus actual power. The two-step analysis and frailty model prove to be more robust against loss of power caused by heterogeneous treatment effects than the stratified Cox model and should be preferred in such situations.
000120669 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000120669 588__ $$aDataset connected to CrossRef, PubMed,
000120669 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b1$$udkfz
000120669 7001_ $$0P:(DE-He78)a9f6104e5c2c26345dcb242e6bdcb2b2$$aKunz, Christina$$b2$$udkfz
000120669 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b3$$eLast author$$udkfz
000120669 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.201600047$$gVol. 59, no. 3, p. 511 - 530$$n3$$p511 - 530$$tBiometrical journal$$v59$$x0323-3847$$y2017
000120669 909CO $$ooai:inrepo02.dkfz.de:120669$$pVDB
000120669 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d1b6c3e8bac62b241b80780416e1388d$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000120669 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000120669 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a9f6104e5c2c26345dcb242e6bdcb2b2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000120669 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000120669 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000120669 9141_ $$y2017
000120669 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000120669 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2015
000120669 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120669 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120669 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120669 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120669 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120669 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000120669 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000120669 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000120669 980__ $$ajournal
000120669 980__ $$aVDB
000120669 980__ $$aI:(DE-He78)C060-20160331
000120669 980__ $$aUNRESTRICTED