000120671 001__ 120671
000120671 005__ 20240228145459.0
000120671 0247_ $$2doi$$a10.1016/j.jmr.2017.03.008
000120671 0247_ $$2pmid$$apmid:28351813
000120671 0247_ $$2ISSN$$a0022-2364
000120671 0247_ $$2ISSN$$a1090-7807
000120671 0247_ $$2ISSN$$a1096-0856
000120671 0247_ $$2ISSN$$a1557-8968
000120671 0247_ $$2altmetric$$aaltmetric:81129326
000120671 037__ $$aDKFZ-2017-01097
000120671 041__ $$aeng
000120671 082__ $$a550
000120671 1001_ $$aBertleff, Marco$$b0
000120671 245__ $$a1D and 2D diffusion pore imaging on a preclinical MR system using adaptive rephasing: Feasibility and pulse sequence comparison.
000120671 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000120671 3367_ $$2DRIVER$$aarticle
000120671 3367_ $$2DataCite$$aOutput Types/Journal article
000120671 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1509716974_12188
000120671 3367_ $$2BibTeX$$aARTICLE
000120671 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120671 3367_ $$00$$2EndNote$$aJournal Article
000120671 520__ $$aDiffusion pore imaging (DPI) has recently been proposed as a means to acquire images of the average pore shape in an image voxel or region of interest. The highly asymmetric gradient scheme of its sequence makes it substantially demanding in terms of the hardware of the NMR system. The aim of this work is to show the feasibility of DPI on a preclinical 9.4T animal scanner. Using water-filled capillaries with an inner radius of 10μm, four different variants of the DPI sequence were compared in 1D and 2D measurements. The pulse sequences applied cover the basic implementation using one long and one temporally narrow gradient pulse, a CPMG-like variant with multiple refocusing RF pulses as well as two variants splitting up the long gradient and distributing it on either side of the refocusing pulse. Substantial differences between the methods were found in terms of signal-to-noise ratio, contrast, blurring, deviations from the expected results and sensitivity to gradient imperfections. Each of the tested sequences was found to produce characteristic gradient mismatches dependent on the absolute value, direction and sign of the applied q-value. Read gradients were applied to compensate these mismatches translating them into time shifts, which enabled 1D DPI yielding capillary radius estimations within the tolerances specified by the manufacturer. For a successful DPI application in 2D, a novel gradient amplitude adaption scheme was implemented to correct for the occurring time shifts. Using this adaption, higher conformity to the expected pore shape, reduced blurring and enhanced contrast were achieved. Images of the phantom's pore shape could be acquired with a nominal resolution of 2.2μm.
000120671 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000120671 588__ $$aDataset connected to CrossRef, PubMed,
000120671 7001_ $$aDomsch, Sebastian$$b1
000120671 7001_ $$0P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d$$aLaun, Frederik$$b2$$udkfz
000120671 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b3$$udkfz
000120671 7001_ $$aSchad, Lothar R$$b4
000120671 773__ $$0PERI:(DE-600)1469665-4$$a10.1016/j.jmr.2017.03.008$$gVol. 278, p. 39 - 50$$p39 - 50$$tJournal of magnetic resonance$$v278$$x1090-7807$$y2017
000120671 909CO $$ooai:inrepo02.dkfz.de:120671$$pVDB
000120671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000120671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000120671 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000120671 9141_ $$y2017
000120671 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000120671 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120671 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120671 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000120671 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON : 2015
000120671 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000120671 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000120671 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120671 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000120671 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120671 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120671 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000120671 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000120671 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000120671 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000120671 980__ $$ajournal
000120671 980__ $$aVDB
000120671 980__ $$aI:(DE-He78)E020-20160331
000120671 980__ $$aUNRESTRICTED