000124296 001__ 124296
000124296 005__ 20240228145505.0
000124296 0247_ $$2doi$$a10.1194/jlr.D076190
000124296 0247_ $$2pmid$$apmid:28373486
000124296 0247_ $$2pmc$$apmc:PMC5454501
000124296 0247_ $$2ISSN$$a0022-2275
000124296 0247_ $$2ISSN$$a1539-7262
000124296 0247_ $$2altmetric$$aaltmetric:18503364
000124296 037__ $$aDKFZ-2017-01192
000124296 041__ $$aeng
000124296 082__ $$a540
000124296 1001_ $$00000-0002-9224-5296$$avon Gerichten, Johanna$$b0$$eFirst author
000124296 245__ $$aDiastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals.
000124296 260__ $$aBethesda, Md.$$bASBMB$$c2017
000124296 3367_ $$2DRIVER$$aarticle
000124296 3367_ $$2DataCite$$aOutput Types/Journal article
000124296 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511258639_9860
000124296 3367_ $$2BibTeX$$aARTICLE
000124296 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000124296 3367_ $$00$$2EndNote$$aJournal Article
000124296 520__ $$aMammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, β-galactosylceramide (GalCer) and β-glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce α-GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS(2) method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous β-GlcCer, β-GalCer, and α-GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of β-GlcCers versus β-GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific β-GlcCers due to loss of β-glucoceramidase 2 activity. Vice versa, β-GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm β-GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic α-GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations.
000124296 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000124296 588__ $$aDataset connected to CrossRef, PubMed,
000124296 7001_ $$aSchlosser, Kerstin$$b1
000124296 7001_ $$0P:(DE-He78)9b090037531356fc2cc46d832af8c7a6$$aLamprecht, Dominic$$b2$$udkfz
000124296 7001_ $$0P:(DE-He78)4440e062d913fde6de3ddc4d2466fad8$$aMorace, Ivan$$b3$$udkfz
000124296 7001_ $$aEckhardt, Matthias$$b4
000124296 7001_ $$00000-0003-4800-6332$$aWachten, Dagmar$$b5
000124296 7001_ $$0P:(DE-He78)3caae9893e3b2704f7bb5a9646ef084d$$aJennemann, Richard$$b6$$udkfz
000124296 7001_ $$00000-0003-3613-2649$$aGröne, Hermann-Josef$$b7
000124296 7001_ $$00000-0002-7753-2422$$aMack, Matthias$$b8
000124296 7001_ $$0P:(DE-He78)a928ded2085c8911822370cad0b4a728$$aSandhoff, Roger$$b9$$eLast author$$udkfz
000124296 773__ $$0PERI:(DE-600)1466675-3$$a10.1194/jlr.D076190$$gVol. 58, no. 6, p. 1247 - 1258$$n6$$p1247 - 1258$$tJournal of lipid research$$v58$$x1539-7262$$y2017
000124296 909CO $$ooai:inrepo02.dkfz.de:124296$$pVDB
000124296 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-9224-5296$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000124296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9b090037531356fc2cc46d832af8c7a6$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000124296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4440e062d913fde6de3ddc4d2466fad8$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000124296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3caae9893e3b2704f7bb5a9646ef084d$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000124296 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-3613-2649$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000124296 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a928ded2085c8911822370cad0b4a728$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000124296 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000124296 9141_ $$y2017
000124296 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ LIPID RES : 2015
000124296 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000124296 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000124296 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000124296 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000124296 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000124296 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000124296 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000124296 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000124296 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000124296 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000124296 9201_ $$0I:(DE-He78)G131-20160331$$kG131$$lAG Lipid-Pathobiochemie$$x0
000124296 9201_ $$0I:(DE-He78)G130-20160331$$kG130$$lZelluläre und Molekulare Pathologie$$x1
000124296 980__ $$ajournal
000124296 980__ $$aVDB
000124296 980__ $$aI:(DE-He78)G131-20160331
000124296 980__ $$aI:(DE-He78)G130-20160331
000124296 980__ $$aUNRESTRICTED