001     124296
005     20240228145505.0
024 7 _ |a 10.1194/jlr.D076190
|2 doi
024 7 _ |a pmid:28373486
|2 pmid
024 7 _ |a pmc:PMC5454501
|2 pmc
024 7 _ |a 0022-2275
|2 ISSN
024 7 _ |a 1539-7262
|2 ISSN
024 7 _ |a altmetric:18503364
|2 altmetric
037 _ _ |a DKFZ-2017-01192
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |a von Gerichten, Johanna
|0 0000-0002-9224-5296
|b 0
|e First author
245 _ _ |a Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals.
260 _ _ |a Bethesda, Md.
|c 2017
|b ASBMB
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511258639_9860
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, β-galactosylceramide (GalCer) and β-glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce α-GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS(2) method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous β-GlcCer, β-GalCer, and α-GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of β-GlcCers versus β-GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific β-GlcCers due to loss of β-glucoceramidase 2 activity. Vice versa, β-GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm β-GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic α-GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Schlosser, Kerstin
|b 1
700 1 _ |a Lamprecht, Dominic
|0 P:(DE-He78)9b090037531356fc2cc46d832af8c7a6
|b 2
|u dkfz
700 1 _ |a Morace, Ivan
|0 P:(DE-He78)4440e062d913fde6de3ddc4d2466fad8
|b 3
|u dkfz
700 1 _ |a Eckhardt, Matthias
|b 4
700 1 _ |a Wachten, Dagmar
|0 0000-0003-4800-6332
|b 5
700 1 _ |a Jennemann, Richard
|0 P:(DE-He78)3caae9893e3b2704f7bb5a9646ef084d
|b 6
|u dkfz
700 1 _ |a Gröne, Hermann-Josef
|0 0000-0003-3613-2649
|b 7
700 1 _ |a Mack, Matthias
|0 0000-0002-7753-2422
|b 8
700 1 _ |a Sandhoff, Roger
|0 P:(DE-He78)a928ded2085c8911822370cad0b4a728
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1194/jlr.D076190
|g Vol. 58, no. 6, p. 1247 - 1258
|0 PERI:(DE-600)1466675-3
|n 6
|p 1247 - 1258
|t Journal of lipid research
|v 58
|y 2017
|x 1539-7262
909 C O |o oai:inrepo02.dkfz.de:124296
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0002-9224-5296
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)9b090037531356fc2cc46d832af8c7a6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)4440e062d913fde6de3ddc4d2466fad8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3caae9893e3b2704f7bb5a9646ef084d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 0000-0003-3613-2649
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)a928ded2085c8911822370cad0b4a728
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J LIPID RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)G131-20160331
|k G131
|l AG Lipid-Pathobiochemie
|x 0
920 1 _ |0 I:(DE-He78)G130-20160331
|k G130
|l Zelluläre und Molekulare Pathologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G131-20160331
980 _ _ |a I:(DE-He78)G130-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21