000124361 001__ 124361
000124361 005__ 20240228145508.0
000124361 0247_ $$2doi$$a10.1111/biom.12545
000124361 0247_ $$2pmid$$apmid:27218478
000124361 0247_ $$2ISSN$$a0006-341X
000124361 0247_ $$2ISSN$$a1541-0420
000124361 0247_ $$2altmetric$$aaltmetric:8170269
000124361 037__ $$aDKFZ-2017-01240
000124361 041__ $$aeng
000124361 082__ $$a570
000124361 1001_ $$0P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aHolland-Letz, Tim$$b0$$eLast author$$udkfz
000124361 245__ $$aOn the combination of c- and D-optimal designs: General approaches and applications in dose-response studies.
000124361 260__ $$aWashington, DC$$bInternat. Biometric Soc.$$c2017
000124361 3367_ $$2DRIVER$$aarticle
000124361 3367_ $$2DataCite$$aOutput Types/Journal article
000124361 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510663653_9516
000124361 3367_ $$2BibTeX$$aARTICLE
000124361 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000124361 3367_ $$00$$2EndNote$$aJournal Article
000124361 520__ $$aDose-response modeling in areas such as toxicology is often conducted using a parametric approach. While estimation of parameters is usually one of the goals, often the main aim of the study is the estimation of quantities derived from the parameters, such as the ED50 dose. From the view of statistical optimal design theory such an objective corresponds to a c-optimal design criterion. Unfortunately, c-optimal designs often create practical problems, and furthermore commonly do not allow actual estimation of the parameters. It is therefore useful to consider alternative designs which show good c-performance, while still being applicable in practice and allowing reasonably good general parameter estimation. In effect, using optimal design terminology this means that a reasonable performance regarding the D-criterion is expected as well. In this article, we propose several approaches to the task of combining c- and D-efficient designs, such as using mixed information functions or setting minimum requirements regarding either c- or D-efficiency, and show how to algorithmically determine optimal designs in each case. We apply all approaches to a standard situation from toxicology, and obtain a much better balance between c- and D-performance. Next, we investigate how to adapt the designs to different parameter values. Finally, we show that the methodology used here is not just limited to the combination of c- and D-designs, but can also be used to handle more general constraint situations such as limits on the cost of an experiment.
000124361 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000124361 588__ $$aDataset connected to CrossRef, PubMed,
000124361 773__ $$0PERI:(DE-600)2054197-1$$a10.1111/biom.12545$$gVol. 73, no. 1, p. 206 - 213$$n1$$p206 - 213$$tBiometrics$$v73$$x0006-341X$$y2017
000124361 909CO $$ooai:inrepo02.dkfz.de:124361$$pVDB
000124361 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000124361 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000124361 9141_ $$y2017
000124361 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000124361 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000124361 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000124361 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICS : 2015
000124361 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000124361 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000124361 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000124361 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000124361 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000124361 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000124361 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000124361 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000124361 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000124361 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000124361 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000124361 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000124361 980__ $$ajournal
000124361 980__ $$aVDB
000124361 980__ $$aI:(DE-He78)C060-20160331
000124361 980__ $$aUNRESTRICTED