000124376 001__ 124376
000124376 005__ 20240228145510.0
000124376 0247_ $$2doi$$a10.1093/nar/gkw1193
000124376 0247_ $$2pmid$$apmid:27913729
000124376 0247_ $$2pmc$$apmc:PMC5389680
000124376 0247_ $$2ISSN$$a0261-3166
000124376 0247_ $$2ISSN$$a0305-1048
000124376 0247_ $$2ISSN$$a1362-4962
000124376 0247_ $$2ISSN$$a1746-8272
000124376 037__ $$aDKFZ-2017-01255
000124376 041__ $$aeng
000124376 082__ $$a540
000124376 1001_ $$aLienhard, Matthias$$b0
000124376 245__ $$aQSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments.
000124376 260__ $$aOxford$$bOxford Univ. Press$$c2017
000124376 3367_ $$2DRIVER$$aarticle
000124376 3367_ $$2DataCite$$aOutput Types/Journal article
000124376 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510749425_10583
000124376 3367_ $$2BibTeX$$aARTICLE
000124376 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000124376 3367_ $$00$$2EndNote$$aJournal Article
000124376 520__ $$aGenome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).
000124376 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000124376 588__ $$aDataset connected to CrossRef, PubMed,
000124376 7001_ $$aGrasse, Sabrina$$b1
000124376 7001_ $$aRolff, Jana$$b2
000124376 7001_ $$aFrese, Steffen$$b3
000124376 7001_ $$0P:(DE-He78)fd01605705d0d99cc15f9a0097d408e2$$aSchirmer, Uwe$$b4$$udkfz
000124376 7001_ $$aBecker, Michael$$b5
000124376 7001_ $$aBörno, Stefan$$b6
000124376 7001_ $$aTimmermann, Bernd$$b7
000124376 7001_ $$0P:(DE-HGF)0$$aChavez, Lukas$$b8
000124376 7001_ $$0P:(DE-He78)7483734fd8ab316391aa604c95f0e98a$$aSültmann, Holger$$b9$$udkfz
000124376 7001_ $$aLeschber, Gunda$$b10
000124376 7001_ $$aFichtner, Iduna$$b11
000124376 7001_ $$aSchweiger, Michal R$$b12
000124376 7001_ $$aHerwig, Ralf$$b13
000124376 773__ $$0PERI:(DE-600)2205588-5$$a10.1093/nar/gkw1193$$gVol. 45, no. 6, p. e44 - e44$$n6$$pe44 - e44$$tNucleic acids symposium series$$v45$$x0261-3166$$y2017
000124376 909CO $$ooai:inrepo02.dkfz.de:124376$$pVDB
000124376 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fd01605705d0d99cc15f9a0097d408e2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000124376 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000124376 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7483734fd8ab316391aa604c95f0e98a$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000124376 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000124376 9141_ $$y2017
000124376 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000124376 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000124376 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000124376 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000124376 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000124376 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000124376 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000124376 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCLEIC ACIDS RES : 2015
000124376 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000124376 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000124376 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000124376 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000124376 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000124376 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000124376 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNUCLEIC ACIDS RES : 2015
000124376 9201_ $$0I:(DE-He78)B063-20160331$$kB063$$lKrebsgenomforschung$$x0
000124376 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x1
000124376 980__ $$ajournal
000124376 980__ $$aVDB
000124376 980__ $$aI:(DE-He78)B063-20160331
000124376 980__ $$aI:(DE-He78)B062-20160331
000124376 980__ $$aUNRESTRICTED