001     124376
005     20240228145510.0
024 7 _ |a 10.1093/nar/gkw1193
|2 doi
024 7 _ |a pmid:27913729
|2 pmid
024 7 _ |a pmc:PMC5389680
|2 pmc
024 7 _ |a 0261-3166
|2 ISSN
024 7 _ |a 0305-1048
|2 ISSN
024 7 _ |a 1362-4962
|2 ISSN
024 7 _ |a 1746-8272
|2 ISSN
037 _ _ |a DKFZ-2017-01255
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |a Lienhard, Matthias
|b 0
245 _ _ |a QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments.
260 _ _ |a Oxford
|c 2017
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510749425_10583
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Grasse, Sabrina
|b 1
700 1 _ |a Rolff, Jana
|b 2
700 1 _ |a Frese, Steffen
|b 3
700 1 _ |a Schirmer, Uwe
|0 P:(DE-He78)fd01605705d0d99cc15f9a0097d408e2
|b 4
|u dkfz
700 1 _ |a Becker, Michael
|b 5
700 1 _ |a Börno, Stefan
|b 6
700 1 _ |a Timmermann, Bernd
|b 7
700 1 _ |a Chavez, Lukas
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sültmann, Holger
|0 P:(DE-He78)7483734fd8ab316391aa604c95f0e98a
|b 9
|u dkfz
700 1 _ |a Leschber, Gunda
|b 10
700 1 _ |a Fichtner, Iduna
|b 11
700 1 _ |a Schweiger, Michal R
|b 12
700 1 _ |a Herwig, Ralf
|b 13
773 _ _ |a 10.1093/nar/gkw1193
|g Vol. 45, no. 6, p. e44 - e44
|0 PERI:(DE-600)2205588-5
|n 6
|p e44 - e44
|t Nucleic acids symposium series
|v 45
|y 2017
|x 0261-3166
909 C O |o oai:inrepo02.dkfz.de:124376
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)fd01605705d0d99cc15f9a0097d408e2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)7483734fd8ab316391aa604c95f0e98a
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCLEIC ACIDS RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NUCLEIC ACIDS RES : 2015
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l Krebsgenomforschung
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21