Home > Publications database > QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments. > print |
001 | 124376 | ||
005 | 20240228145510.0 | ||
024 | 7 | _ | |a 10.1093/nar/gkw1193 |2 doi |
024 | 7 | _ | |a pmid:27913729 |2 pmid |
024 | 7 | _ | |a pmc:PMC5389680 |2 pmc |
024 | 7 | _ | |a 0261-3166 |2 ISSN |
024 | 7 | _ | |a 0305-1048 |2 ISSN |
024 | 7 | _ | |a 1362-4962 |2 ISSN |
024 | 7 | _ | |a 1746-8272 |2 ISSN |
037 | _ | _ | |a DKFZ-2017-01255 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Lienhard, Matthias |b 0 |
245 | _ | _ | |a QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments. |
260 | _ | _ | |a Oxford |c 2017 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1510749425_10583 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea). |
536 | _ | _ | |a 312 - Functional and structural genomics (POF3-312) |0 G:(DE-HGF)POF3-312 |c POF3-312 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Grasse, Sabrina |b 1 |
700 | 1 | _ | |a Rolff, Jana |b 2 |
700 | 1 | _ | |a Frese, Steffen |b 3 |
700 | 1 | _ | |a Schirmer, Uwe |0 P:(DE-He78)fd01605705d0d99cc15f9a0097d408e2 |b 4 |u dkfz |
700 | 1 | _ | |a Becker, Michael |b 5 |
700 | 1 | _ | |a Börno, Stefan |b 6 |
700 | 1 | _ | |a Timmermann, Bernd |b 7 |
700 | 1 | _ | |a Chavez, Lukas |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Sültmann, Holger |0 P:(DE-He78)7483734fd8ab316391aa604c95f0e98a |b 9 |u dkfz |
700 | 1 | _ | |a Leschber, Gunda |b 10 |
700 | 1 | _ | |a Fichtner, Iduna |b 11 |
700 | 1 | _ | |a Schweiger, Michal R |b 12 |
700 | 1 | _ | |a Herwig, Ralf |b 13 |
773 | _ | _ | |a 10.1093/nar/gkw1193 |g Vol. 45, no. 6, p. e44 - e44 |0 PERI:(DE-600)2205588-5 |n 6 |p e44 - e44 |t Nucleic acids symposium series |v 45 |y 2017 |x 0261-3166 |
909 | C | O | |o oai:inrepo02.dkfz.de:124376 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)fd01605705d0d99cc15f9a0097d408e2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)7483734fd8ab316391aa604c95f0e98a |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-312 |2 G:(DE-HGF)POF3-300 |v Functional and structural genomics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCLEIC ACIDS RES : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NUCLEIC ACIDS RES : 2015 |
920 | 1 | _ | |0 I:(DE-He78)B063-20160331 |k B063 |l Krebsgenomforschung |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l Pädiatrische Neuroonkologie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B063-20160331 |
980 | _ | _ | |a I:(DE-He78)B062-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|