000124448 001__ 124448
000124448 005__ 20240228145515.0
000124448 0247_ $$2doi$$a10.1007/s00726-017-2415-4
000124448 0247_ $$2pmid$$apmid:28421297
000124448 0247_ $$2ISSN$$a0939-4451
000124448 0247_ $$2ISSN$$a1438-2199
000124448 0247_ $$2altmetric$$aaltmetric:19200531
000124448 037__ $$aDKFZ-2017-01325
000124448 041__ $$aeng
000124448 082__ $$a540
000124448 1001_ $$0P:(DE-He78)22a10e47ef85d2b98a12b21a7f332e56$$aLanz, Tobias$$b0$$eFirst author
000124448 245__ $$aSuppression of Th1 differentiation by tryptophan supplementation in vivo.
000124448 260__ $$aWien [u.a.]$$bSpringer$$c2017
000124448 3367_ $$2DRIVER$$aarticle
000124448 3367_ $$2DataCite$$aOutput Types/Journal article
000124448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1660813040_27718
000124448 3367_ $$2BibTeX$$aARTICLE
000124448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000124448 3367_ $$00$$2EndNote$$aJournal Article
000124448 520__ $$aMetabolism of the essential amino acid tryptophan (trp) is a key endogenous immunosuppressive pathway restricting inflammatory responses. Tryptophan metabolites promote regulatory T cell (Treg) differentiation and suppress proinflammatory T helper cell (Th)1 and Th17 phenotypes. It has been shown that treatment with natural and synthetic tryptophan metabolites can suppress autoimmune neuroinflammation in preclinical animal models. Here, we tested if oral intake of tryptophan would increase immunosuppressive tryptophan metabolites and ameliorate autoimmune neuroinflammation as a safe approach to treat autoimmune disorders like multiple sclerosis (MS). Without oral supplementation, systemic kynurenine levels decrease during the initiation phase of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, indicating systemic activation of tryptophan metabolism. Daily oral gavage of up to 10 mg/mouse/day was safe and increased serum kynurenine levels by more than 20-fold for more than 3 h after the gavage. While this treatment resulted in suppression of myelin-specific Th1 responses, there was no relevant impact on clinical disease activity. These data show that oral trp supplementation at subtoxic concentrations suppresses antigen-specific Th1 responses, but suggest that the increase in trp metabolites is not sustained enough to impact neuroinflammation.
000124448 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000124448 588__ $$aDataset connected to CrossRef, PubMed,
000124448 7001_ $$0P:(DE-He78)a7dd606f37ce122c7f1c4140e754d515$$aBecker, Simon$$b1
000124448 7001_ $$0P:(DE-He78)0a6d2d4e161256f6ce1ca4b630bcf246$$aMohapatra, Soumya Ranjan$$b2
000124448 7001_ $$0P:(DE-He78)14aa02d2ca0515d0c53f1d6678e3ca34$$aOpitz, Christiane$$b3
000124448 7001_ $$0P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aWick, Wolfgang$$b4
000124448 7001_ $$0P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5$$aPlatten, Michael$$b5$$eLast author
000124448 773__ $$0PERI:(DE-600)1480643-5$$a10.1007/s00726-017-2415-4$$gVol. 49, no. 7, p. 1169 - 1175$$n7$$p1169 - 1175$$tAmino acids$$v49$$x1438-2199$$y2017
000124448 909CO $$ooai:inrepo02.dkfz.de:124448$$pVDB
000124448 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)22a10e47ef85d2b98a12b21a7f332e56$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000124448 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a7dd606f37ce122c7f1c4140e754d515$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000124448 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0a6d2d4e161256f6ce1ca4b630bcf246$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000124448 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)14aa02d2ca0515d0c53f1d6678e3ca34$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000124448 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000124448 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ef8651b0f857b9c640aa5b1498c43b5$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000124448 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000124448 9141_ $$y2017
000124448 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000124448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAMINO ACIDS : 2015
000124448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000124448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000124448 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000124448 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000124448 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000124448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000124448 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000124448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000124448 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000124448 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000124448 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000124448 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000124448 9201_ $$0I:(DE-He78)G160-20160331$$kG160$$lNeuroimmunologie und Hirntumorimmunologie$$x0
000124448 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x1
000124448 9201_ $$0I:(DE-He78)G161-20160331$$kG161$$lBrain Cancer Metabolism$$x2
000124448 9201_ $$0I:(DE-He78)G370-20160331$$kG370$$lKKE Neuroonkologie$$x3
000124448 980__ $$ajournal
000124448 980__ $$aVDB
000124448 980__ $$aI:(DE-He78)G160-20160331
000124448 980__ $$aI:(DE-He78)L101-20160331
000124448 980__ $$aI:(DE-He78)G161-20160331
000124448 980__ $$aI:(DE-He78)G370-20160331
000124448 980__ $$aUNRESTRICTED