000125273 001__ 125273
000125273 005__ 20240228145520.0
000125273 0247_ $$2doi$$a10.1038/s41467-017-00086-6
000125273 0247_ $$2pmid$$apmid:28706229
000125273 0247_ $$2pmc$$apmc:PMC5509671
000125273 0247_ $$2altmetric$$aaltmetric:21839432
000125273 037__ $$aDKFZ-2017-01412
000125273 041__ $$aeng
000125273 082__ $$a500
000125273 1001_ $$0P:(DE-HGF)0$$aBleicken, Stephanie$$b0$$eFirst author
000125273 245__ $$aQuantitative interactome of a membrane Bcl-2 network identifies a hierarchy of complexes for apoptosis regulation.
000125273 260__ $$aLondon$$bNature Publishing Group$$c2017
000125273 3367_ $$2DRIVER$$aarticle
000125273 3367_ $$2DataCite$$aOutput Types/Journal article
000125273 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510045084_26476
000125273 3367_ $$2BibTeX$$aARTICLE
000125273 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000125273 3367_ $$00$$2EndNote$$aJournal Article
000125273 520__ $$aThe Bcl-2 proteins form a complex interaction network that controls mitochondrial permeabilization and apoptosis. The relative importance of different Bcl-2 complexes and their spatio-temporal regulation is debated. Using fluorescence cross-correlation spectroscopy to quantify the interactions within a minimal Bcl-2 network, comprised by cBid, Bax, and Bcl-xL, we show that membrane insertion drastically alters the pattern of Bcl-2 complexes, and that the C-terminal helix of Bcl-xL determines its binding preferences. At physiological temperature, Bax can spontaneously activate in a self-amplifying process. Strikingly, Bax also recruits Bcl-xL to membranes, which is sufficient to retrotranslocate Bax back into solution to secure membrane integrity. Our study disentangles the hierarchy of Bcl-2 complex formation in relation to their environment: Bcl-xL association with cBid occurs in solution and in membranes, where the complex is stabilized, whereas Bcl-xL binding to Bax occurs only in membranes and with lower affinity than to cBid, leading instead to Bax retrotranslocation.The permeabilization of the mitochondrial outer membrane to induce apoptosis is regulated by complex interactions between Bcl-2 family members. Here the authors develop a quantitative interactome of a membrane Bcl-2 network and identify a hierarchy of protein complexes in apoptosis induction.
000125273 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000125273 588__ $$aDataset connected to CrossRef, PubMed,
000125273 7001_ $$aHantusch, Annika$$b1
000125273 7001_ $$aDas, Kushal Kumar$$b2
000125273 7001_ $$aFrickey, Tancred$$b3
000125273 7001_ $$00000-0002-3894-5945$$aGarcia-Saez, Ana J$$b4$$eLast author
000125273 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-017-00086-6$$gVol. 8, no. 1, p. 73$$n1$$p73$$tNature Communications$$v8$$x2041-1723$$y2017
000125273 909CO $$ooai:inrepo02.dkfz.de:125273$$pVDB
000125273 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000125273 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-3894-5945$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000125273 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000125273 9141_ $$y2017
000125273 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000125273 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000125273 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000125273 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000125273 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000125273 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000125273 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000125273 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000125273 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000125273 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000125273 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000125273 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000125273 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000125273 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000125273 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000125273 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000125273 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000125273 9201_ $$0I:(DE-He78)B160-20160331$$kB160$$lMembranbiophysik$$x0
000125273 980__ $$ajournal
000125273 980__ $$aVDB
000125273 980__ $$aI:(DE-He78)B160-20160331
000125273 980__ $$aUNRESTRICTED